Pregunta
upstudy study bank question image url

Using the method of substitution, fill in the bla The solution set of the system \( \left\{\begin{array}{l}x-y-z=4 \\ x+y-z=12 \\ x-y+z=-4\end{array}\right. \)

Ask by Pierce King. in Iraq
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution to the system is \( x = 4 \), \( y = 4 \), and \( z = -4 \).

Solución

We are given the system:   (1) x – y – z = 4   (2) x + y – z = 12   (3) x – y + z = –4 Step 1. Solve equation (1) for x:   x = 4 + y + z Step 2. Substitute x = 4 + y + z into equation (2):   (4 + y + z) + y – z = 12   4 + 2y = 12 Subtract 4 from both sides:   2y = 8, so  y = 4 Step 3. Now substitute y = 4 into the expression for x:   x = 4 + 4 + z ⇒ x = 8 + z Step 4. Substitute x = 8 + z and y = 4 into equation (3):   (8 + z) – 4 + z = –4   8 + z – 4 + z = –4   4 + 2z = –4 Subtract 4 from both sides:   2z = –8, so  z = –4 Step 5. Now find x:   x = 8 + z = 8 + (–4) = 4 Thus, the solution set is:   x = 4, y = 4, z = –4 So, the unique solution to the system is (4, 4, –4).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the system using substitution, let's start with one of the equations and express one variable in terms of the others. For simplicity, we can take the first equation \(x - y - z = 4\) and isolate \(x\): \[ x = y + z + 4 \] Now, we can substitute this expression for \(x\) into the other two equations. Substituting into the second equation \(x + y - z = 12\): \[ (y + z + 4) + y - z = 12 \] Simplifying this gives: \[ 2y + 4 = 12 \] \[ 2y = 8 \] \[ y = 4 \] Now that we have \(y\), we can substitute \(y = 4\) back into the expression for \(x\): \[ x = 4 + z + 4 \] So, \[ x = z + 8 \] Next, substitute \(y = 4\) into the first equation to find \(z\): \[ x - 4 - z = 4 \] Substituting \(x = z + 8\): \[ (z + 8) - 4 - z = 4 \] This simplifies to: \[ 4 = 4 \] This means we have found the relationship between \(x\), \(y\), and \(z\) but not specific values for \(z\). Hence, we can express \(x\) in terms of \(z\): Now let’s use the third equation \(x - y + z = -4\): Substituting \(y = 4\) and \(x = z + 8\): \[ (z + 8) - 4 + z = -4 \] This leads to: \[ 2z + 4 = -4 \] Simplifying gives: \[ 2z = -8 \] So, \[ z = -4 \] Now we can find \(x\) using \(z = -4\): \[ x = -4 + 8 = 4 \] We already found \(y = 4\). The solution set of the system is: \[ (x, y, z) = (4, 4, -4) \]

preguntas relacionadas

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Álgebra Mexico Feb 26, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad