2.15 Use \( \cos (\alpha-\beta) \) to derive a formula for \( \sin (\alpha-\beta) \). (Hint: use co-function) \( \qquad \) \( \qquad \) (3) 21.6 Use \( \cos (\alpha-\beta) \) to derive a formula for \( \sin (\alpha+\beta) \). (Hint: use ce-function) \( \qquad \) \( \qquad \) (3) [22] Cond 12 Mathenutics SBA 2005 Prge 18 of 33
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To derive a formula for \( \sin (\alpha-\beta) \) using \( \cos (\alpha-\beta) \), recall that \( \cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \). Using the co-function identity, we know that \( \sin(\theta) = \cos\left(\frac{\pi}{2} - \theta\right) \). By exploiting that relationship, we can derive the sine difference formula: \[ \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \] Now for \( \sin(\alpha+\beta) \), we can manipulate the expression for \( \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \). Again using co-function identities, and knowing that \( \sin(\alpha+\beta) = \cos\left(\frac{\pi}{2} - (\alpha+\beta)\right) \), we can derive the sum of angles as: \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \]
