Pregunta
upstudy study bank question image url

You want to be able to withdraw \( \$ 30,000 \) from your account each year for 20 years after you retire, You expect to retire in 15 years. If your account earns \( 9 \% \) interest, how much will you need to deposit each year until retirement to achieve your retirement goals? Round your answer to the nearest cent.

Ask by Malone Huff. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

You need to deposit approximately \$241,820.65 each year until retirement to achieve your retirement goals.

Solución

To determine how much you need to deposit each year until retirement to achieve your retirement goals, we can use the formula for calculating the present value of an annuity: \[ PV = \frac{PMT}{r} \left( 1 - \frac{1}{(1 + r)^n} \right) \] Where: - \( PV \) is the present value (the amount you need to deposit each year until retirement), - \( PMT \) is the annual withdrawal amount (\$30,000 in this case), - \( r \) is the annual interest rate (9% in this case), - \( n \) is the number of years until retirement (15 years in this case). Given that you want to withdraw \$30,000 each year for 20 years after retirement, we can calculate the present value of the annuity using the formula above. Let's calculate the present value of the annuity: Calculate the value by following steps: - step0: Calculate: \(\frac{30000}{0.09}\times \left(1-\frac{1}{\left(1+0.09\right)^{15}}\right)\) - step1: Add the numbers: \(\frac{30000}{0.09}\times \left(1-\frac{1}{1.09^{15}}\right)\) - step2: Convert the expressions: \(\frac{30000}{0.09}\times \left(1-\frac{1}{\left(\frac{109}{100}\right)^{15}}\right)\) - step3: Simplify: \(\frac{30000}{0.09}\times \left(1-\frac{100^{15}}{109^{15}}\right)\) - step4: Subtract the numbers: \(\frac{30000}{0.09}\times \frac{109^{15}-100^{15}}{109^{15}}\) - step5: Divide the numbers: \(\frac{1000000}{3}\times \frac{109^{15}-100^{15}}{109^{15}}\) - step6: Multiply the fractions: \(\frac{1000000\left(109^{15}-100^{15}\right)}{3\times 109^{15}}\) - step7: Multiply: \(\frac{1000000\times 109^{15}-100^{18}}{3\times 109^{15}}\) The present value of the annuity is approximately \$241,820.65. Therefore, you will need to deposit approximately \$241,820.65 each year until retirement to achieve your retirement goals.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find out how much you'll need to deposit each year until retirement, we first need to determine the total amount needed at retirement. You'll be withdrawing $30,000 for 20 years, and we can use the Present Value of an Annuity formula: \[ PV = PMT \times \left(\frac{1 - (1 + r)^{-n}}{r}\right) \] Where: - \( PMT = 30000 \) (annual withdrawal), - \( r = 0.09 \) (annual interest rate), - \( n = 20 \) (number of withdrawals). Calculating this gives: \[ PV = 30000 \times \left(\frac{1 - (1 + 0.09)^{-20}}{0.09}\right) \approx 30000 \times 9.645 = 289,350 \] This means you'll need about $289,350 at retirement. Next, we need to find out how much to save each year for the next 15 years. We'll use the Future Value of an Annuity formula: \[ FV = PMT \times \left(\frac{(1 + r)^{n} - 1}{r}\right) \] We want \( FV \) to equal $289,350, so substituting our values, we have: \[ 289350 = PMT \times \left(\frac{(1 + 0.09)^{15} - 1}{0.09}\right) \] Calculating \( \frac{(1 + 0.09)^{15} - 1}{0.09} \approx \frac{4.412 - 1}{0.09} \approx 37.580 \). Now, we can rearrange this to solve for \( PMT \): \[ PMT = \frac{289350}{37.580} \approx 7,707.62 \] So, you'll need to deposit approximately \( \$7,707.62 \) each year for the next 15 years to achieve your retirement goals.

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad