2.1. Given \( \frac{4 x-3}{x^{2}}=m \), if -4 is one of the roots of the equation, determine the value of \( m \) and the other root.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To find the value of \( m \) when -4 is a root of the equation \( \frac{4x - 3}{x^2} = m \), we first substitute \( x = -4 \) into the equation: \[ \frac{4(-4) - 3}{(-4)^2} = m \implies \frac{-16 - 3}{16} = m \implies \frac{-19}{16} = m. \] Now, the equation can be rearranged to \( 4x - 3 = mx^2 \), leading to the quadratic form \( mx^2 - 4x + 3 = 0 \). Substituting \( m = -\frac{19}{16} \): \[ -\frac{19}{16}x^2 - 4x + 3 = 0. \] Multiplying through by -16 to eliminate the fraction, we get: \[ 19x^2 + 64x - 48 = 0. \] To find the other root, we can use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ x = \frac{-64 \pm \sqrt{64^2 - 4 \cdot 19 \cdot (-48)}}{2 \cdot 19}. \] Calculating the discriminant: \[ 64^2 = 4096, \] \[ -4 \cdot 19 \cdot (-48) = 3648 \implies 4096 + 3648 = 7744. \] So, \[ \sqrt{7744} = 88. \] Now substitute back into the formula: \[ x = \frac{-64 \pm 88}{38} \Rightarrow x_1 = \frac{24}{38} = \frac{12}{19}, \quad x_2 = \frac{-152}{38} = -4. \] Thus, the value of \( m \) is \( -\frac{19}{16} \), and the other root is \( \frac{12}{19} \).
