Pregunta
upstudy study bank question image url

Crossfade Corp. has a bond with apar value of \( \$ 2,000 \) that sells for \( \$ 1,948.34 \). The bond has a coupon rate of 6.54 percent and matures in 14 years. If the bond makes semiannual coupon payments, what is the YTM of the bond? a. \( 6.49 \% \) b. \( 6.83 \% \) c. \( 3.41 \% \) d. \( 5.12 \% \) e. \( 6.15 \% \)

Ask by Cervantes Turnbull. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The YTM of the bond is 6.83%, which is option b.

Solución

We are given the following information about the bond: • Face (par) value = $2,000 • Current price = $1,948.34 • Annual coupon rate = 6.54% → Annual coupon payment = 0.0654 × $2,000 = $130.80 • Since the bond pays semiannual coupons, each coupon payment = $130.80/2 = $65.40 • Number of years until maturity = 14 years → Total number of periods = 14 × 2 = 28 • Let i be the semiannual yield (in decimal form). Then the yield to maturity (YTM) on an annual basis (nominal rate compounded semiannually) is 2i. The bond’s price is the present value of all future coupon payments plus the present value of the face value at maturity. This relationship can be written as:   Price = Coupon × [1 – (1 + i)^(-n)]/i + Face Value × (1 + i)^(-n) where n = 28. Plugging in the numbers:   1,948.34 = 65.40 × [1 – (1 + i)^(-28)]/i + 2,000 × (1 + i)^(-28) We need to solve for i. Rather than solving this equation algebraically, we can use trial and error (or a financial calculator). Let’s check the candidate answer associated with an annual yield of 6.83%. Since the yield is compounded semiannually, the corresponding semiannual yield is:   i = 6.83%/2 = 3.415% or 0.03415 (in decimal). Step 1. Compute (1 + i)^28:   (1 + 0.03415)^28 ≈ exp(28 × ln(1.03415))   First, ln(1.03415) ≈ 0.0336, so:   28 × 0.0336 ≈ 0.9408   exp(0.9408) ≈ 2.562 Thus, (1 + i)^28 ≈ 2.562. Step 2. Compute the discount factor:   (1 + i)^(-28) = 1/2.562 ≈ 0.390 Step 3. Calculate the present value of the coupon payments:   Annuity factor = [1 – 0.390] / 0.03415 ≈ 0.610 / 0.03415 ≈ 17.86   Present Value of Coupons = 65.40 × 17.86 ≈ 1,168 Step 4. Calculate the present value of the par value:   PV of Face Value = 2,000 × 0.390 ≈ 780 Step 5. Add the two present values:   Total PV ≈ 1,168 + 780 = 1,948 This computed price is virtually identical to the given market price of $1,948.34, confirming that our semiannual yield of about 3.415% is correct. Consequently, the annual yield (YTM) is:   YTM = 2 × 3.415% ≈ 6.83% Thus, the correct answer is 6.83%, which corresponds to option b.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the Yield to Maturity (YTM) of the bond, we can use the following formula, which involves solving for the YTM in the equation of the present value of an annuity: \[ P = \sum_{t=1}^{n} \frac{C}{(1 + r)^t} + \frac{F}{(1 + r)^n} \] Where: - \( P \) is the current price of the bond (\$1,948.34) - \( C \) is the semiannual coupon payment (\( \frac{0.0654 \times 2000}{2} = 65.40 \)) - \( F \) is the face value of the bond (\$2,000) - \( n \) is the total number of payments (14 years × 2 = 28) - \( r \) is the semiannual yield to maturity You would typically need to use a financial calculator or software to solve for \( r \) as it involves iterative trial and error. However, you can also estimate the YTM using trial rates from the answer choices provided. After testing through calculations, you will find that the YTM converges on **6.49%**, which corresponds to answer choice **a**. If the calculations feel daunting, remember to double-check your math as rounding errors can sometimes lead to choosing the wrong answer, especially when dealing with bond valuations. Using a financial calculator can simplify the YTM calculation, so keep one handy for future bonds!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad