Pregunta
upstudy study bank question image url

1.2 Determine the Highest Common Factor (HCF) and Lowest Common Multiple (LCM) of 70 and 300 . 1.2 .1 HCF

Ask by Ramirez Norton. in South Africa
Feb 23,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The Highest Common Factor (HCF) of 70 and 300 is 10.

Solución

Step 1: Factorize each number into its prime factors. • 70 = 2 × 5 × 7 • 300 = 2² × 3 × 5² Step 2: Identify the common prime factors. In this case, both numbers have the primes 2 and 5. Step 3: For each common factor, choose the smallest exponent in the factorizations. • For 2: The smaller exponent is 2¹. • For 5: The smaller exponent is 5¹. Step 4: Multiply these together to get the HCF. HCF = 2¹ × 5¹ = 2 × 5 = 10 Thus, the Highest Common Factor (HCF) of 70 and 300 is 10.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the Highest Common Factor (HCF) of 70 and 300, we can use the prime factorization method. The prime factors of 70 are 2, 5, and 7 (since 70 = 2 × 5 × 7), while the prime factors of 300 are 2, 3, 5, and 5 (since 300 = 2 × 3 × 5²). The only prime factors that both numbers share are 2 and 5. Therefore, the HCF is 2 × 5 = 10. Now, here's a fun fact: HCFs are not just useful in math; they also show up in everyday scenarios! For example, if you were arranging two types of cookies for a party—70 chocolate chip and 300 oatmeal—you could bake them in batches of 10 to minimize the number of trays you’d use. For a little historical kick, ancient mathematicians in various cultures developed methods to find HCFs long before the term was coined. The Greeks, for example, used geometry and the Euclidean algorithm, which is still a foundational concept in number theory today. Who knew math had its roots in geometry?

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad