\( \begin{aligned} x+3 y & =1 \\ 2 x+3 y & =5 \\ \text { 3) } \quad x-3 y & =-7\end{aligned} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To solve the system of equations, we can start by simplifying the first two equations. First, we'll subtract the first equation from the second: \[ (2x + 3y) - (x + 3y) = 5 - 1 \] This simplifies to: \[ x = 4 \] Now, we can substitute \(x = 4\) back into the first equation: \[ 4 + 3y = 1 \] Solving for \(y\): \[ 3y = 1 - 4 \\ 3y = -3 \\ y = -1 \] So we have \(x = 4\) and \(y = -1\). For the third equation \(x - 3y = -7\), we can substitute \(x = 4\) and \(y = -1\): \[ 4 - 3(-1) = -7 \\ 4 + 3 = 7 \neq -7 \] This means that the first two equations are consistent, but they disagree with the third. Therefore, the system has no solution.
