Pregunta
upstudy study bank question image url

Q2- Find the equation of the tangent line drawn to the graph of the relation \( \ln (x y)+2 x y=2 \) at \( \left(x_{0}, y_{0}\right)=(e, 1 / e) \)

Ask by Smith Gordon. in Turkey
Jan 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation of the tangent line at \( (e, 1/e) \) is \( y = -\frac{1}{e^2}x + \frac{2}{e} \).

Solución

To find the equation of the tangent line to the graph of the relation \( \ln (x y) + 2 x y = 2 \) at the point \( (x_0, y_0) = (e, 1/e) \), we will follow these steps: 1. **Differentiate the equation implicitly** to find \( \frac{dy}{dx} \). 2. **Evaluate the derivative** at the point \( (e, 1/e) \) to find the slope of the tangent line. 3. **Use the point-slope form** of the equation of a line to write the equation of the tangent line. ### Step 1: Differentiate the equation implicitly We start with the equation: \[ \ln(xy) + 2xy = 2 \] Differentiating both sides with respect to \( x \): - The derivative of \( \ln(xy) \) using the chain rule is \( \frac{1}{xy} \cdot (y + x \frac{dy}{dx}) \). - The derivative of \( 2xy \) is \( 2(y + x \frac{dy}{dx}) \). Thus, differentiating gives us: \[ \frac{1}{xy} \left( y + x \frac{dy}{dx} \right) + 2 \left( y + x \frac{dy}{dx} \right) = 0 \] Now, we can simplify this equation. ### Step 2: Solve for \( \frac{dy}{dx} \) Let's rearrange the equation: \[ \frac{y + x \frac{dy}{dx}}{xy} + 2y + 2x \frac{dy}{dx} = 0 \] Multiplying through by \( xy \) to eliminate the fraction: \[ y + x \frac{dy}{dx} + 2xy^2 + 2x^2y \frac{dy}{dx} = 0 \] Now, collect the terms involving \( \frac{dy}{dx} \): \[ x \frac{dy}{dx} + 2x^2y \frac{dy}{dx} = -y - 2xy^2 \] Factoring out \( \frac{dy}{dx} \): \[ \frac{dy}{dx} (x + 2x^2y) = -y - 2xy^2 \] Thus, we can solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{-y - 2xy^2}{x + 2x^2y} \] ### Step 3: Evaluate the derivative at \( (e, 1/e) \) Now we substitute \( x = e \) and \( y = \frac{1}{e} \): \[ \frac{dy}{dx} = \frac{-\frac{1}{e} - 2e \left(\frac{1}{e}\right)^2}{e + 2e^2 \left(\frac{1}{e}\right)} \] Calculating the numerator: \[ -\frac{1}{e} - 2e \cdot \frac{1}{e^2} = -\frac{1}{e} - \frac{2}{e} = -\frac{3}{e} \] Calculating the denominator: \[ e + 2e^2 \cdot \frac{1}{e} = e + 2e = 3e \] Thus, we have: \[ \frac{dy}{dx} = \frac{-\frac{3}{e}}{3e} = -\frac{1}{e^2} \] ### Step 4: Write the equation of the tangent line The slope of the tangent line at the point \( (e, 1/e) \) is \( -\frac{1}{e^2} \). Using the point-slope form of the line: \[ y - y_0 = m(x - x_0) \] where \( m = -\frac{1}{e^2} \), \( x_0 = e \), and \( y_0 = \frac{1}{e} \): \[ y - \frac{1}{e} = -\frac{1}{e^2}(x - e) \] This can be rearranged to: \[ y = -\frac{1}{e^2}x + \frac{1}{e} + \frac{e}{e^2} \] \[ y = -\frac{1}{e^2}x + \frac{2}{e} \] Thus, the equation of the tangent line is: \[ y = -\frac{1}{e^2}x + \frac{2}{e} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the equation of the tangent line, we begin by implicitly differentiating the equation \( \ln (x y) + 2 x y = 2 \) with respect to \( x \). The product rule and chain rule come into play. After differentiating, we'll solve for \( \frac{dy}{dx} \), and evaluate it at the point \( (e, 1/e) \). After deriving and substituting \( x = e \) and \( y = \frac{1}{e} \), we find the slope of the tangent line. Finally, using the point-slope form of the equation of a line, we can construct the equation of the tangent line. But hey, even if calculus seems a bit tricky, think of it like riding a wave—sometimes you just have to balance and let the flow guide you! And always remember, practice makes perfect; the more problems you tackle, the easier it becomes to navigate through them! For some extra fun, you might want to explore more on how tangent lines relate to real-life scenarios, like how engineers use derivatives to determine slopes of hills while planning roads. It’s amazing how math comes alive outside the classroom!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad