Pregunta
Simplify. \[ \left(\frac{5 a^{4}}{b}\right)^{3} \] Write your answer without parentheses.
Ask by Dunn Griffiths. in the United States
Feb 26,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
125a¹²/b³
Solución
To simplify the expression (5a⁴/b)³, apply the exponent to both the numerator and the denominator:
Step 1: Raise the numerator and the denominator to the power of 3:
(5a⁴)³/b³
Step 2: Distribute the exponent in the numerator:
(5³) * (a⁴)³ / b³
Step 3: Simplify:
125 a¹² / b³
The simplified expression is 125a¹²/b³.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Bonus Knowledge
To simplify \(\left(\frac{5 a^{4}}{b}\right)^{3}\), we apply the power of a quotient rule, which states that \((\frac{x}{y})^{n} = \frac{x^{n}}{y^{n}}\). Thus, we can break it down: \[ \left(\frac{5 a^{4}}{b}\right)^{3} = \frac{(5 a^{4})^{3}}{b^{3}} \] Now, let's simplify the numerator: \((5 a^{4})^{3} = 5^{3} (a^{4})^{3} = 125 a^{12}\) Putting it all together gives us: \[ = \frac{125 a^{12}}{b^{3}} \] So the final answer is: \[ \frac{125 a^{12}}{b^{3}} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium