B. Assume that \( x \) and \( y \) are two random variables having the joint pdf
\[ f(x, y)=\left\{\begin{array}{cc}\frac{2 x+y}{4} & 0
Ask by Hanson Rose. in Nigeria
Feb 21,2025
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To find \( P(x+y \leq 1) \), we first need to evaluate the appropriate limits for the integration of the joint probability density function \( f(x, y) \). The region defined by \( x + y \leq 1 \) in the coordinate space (with the conditions \( 0 < x < 1 \) and \( 0 < y < 2 \)) can be represented by the line \( y = 1 - x \). Next, we will set up the double integral: \[ P(x+y \leq 1) = \int_{0}^{1} \int_{0}^{1-x} f(x, y) \, dy \, dx \] Given the joint pdf \( f(x, y) = \frac{2x + y}{4} \), we substitute this into our integral: \[ P(x+y \leq 1) = \int_{0}^{1} \int_{0}^{1-x} \frac{2x+y}{4} \, dy \, dx \] Now, we evaluate the inner integral: \[ \int_{0}^{1-x} \frac{2x+y}{4} \, dy = \frac{1}{4} \left[ 2xy + \frac{y^2}{2} \right]_{0}^{1-x} \] Calculating this: \[ = \frac{1}{4} \left[ 2x(1-x) + \frac{(1-x)^2}{2} \right] = \frac{1}{4} \left[ 2x - 2x^2 + \frac{1 - 2x + x^2}{2} \right] \] \[ = \frac{1}{4} \left[ 2x - 2x^2 + \frac{1}{2} - x + \frac{x^2}{2} \right] \] \[ = \frac{1}{4} \left[ x - \frac{3x^2}{2} + \frac{1}{2} \right] \] Now we integrate this from \( x = 0 \) to \( x = 1 \): \[ P(x+y \leq 1) = \int_{0}^{1} \frac{1}{4} \left[ x - \frac{3x^2}{2} + \frac{1}{2} \right] \, dx \] This simplifies to: \[ = \frac{1}{4} \left[ \frac{x^2}{2} - \frac{3x^3}{6} + \frac{x}{2} \right]_{0}^{1} \] Evaluating it: \[ = \frac{1}{4} \left[ \frac{1}{2} - \frac{1}{2} + \frac{1}{2} \right] = \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8} \] Thus, the final answer is: \[ P(x+y \leq 1) = \frac{1}{8} \]
