Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To solve the inequality \( 5 - 4x - x^2 > 0 \), first rearrange it into standard form: \( -x^2 - 4x + 5 > 0 \). You can flip the inequality by multiplying by -1 (and reversing the sign), yielding \( x^2 + 4x - 5 < 0 \). Next, factor the quadratic to find its roots: \( (x + 5)(x - 1) < 0 \). The roots are \( x = -5 \) and \( x = 1 \). Analyze intervals: between the roots, the expression is negative, so the solution is \( -5 < x < 1 \). Finding the roots of a quadratic function can be tricky. A common mistake is forgetting to check the intervals around the roots. After identifying the critical points, always test points in each interval to confirm whether the original inequality holds. For example, check a value from each interval such as -6, 0, and 2 to validate the sign.


Puedes disfrutar
Empieza ahora- Explicaciones paso a paso
- Tutores expertos en vivo 24/7
- Número ilimitado de preguntas
- Sin interrupciones
- Acceso completo a Respuesta y Solución
- Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Totalmente gratis pero limitado
- Solución limitada


