Pregunta
upstudy study bank question image url

LT 3: I can develop quadratic revenue and profit functions and determine the maximum or minimum of the quadratic function. CJ Real Estate Co. is building a new housing development. They predict the demand equation for its houses is given by \( q=-0.04 p+14,250 \), where \( q \) is the number of houses they can build if the price \( \$ p \) per house. At what price should it sell its houses to get the largest revenue?

Ask by Franklin Macdonald. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

CJ Real Estate Co. should set the price at approximately \$178,125 per house to maximize revenue.

Solución

Step 1. Write the Revenue Function. The revenue (R) is given by the product of the price per house (p) and the quantity sold (q). With the demand function q = –0.04p + 14,250, the revenue function is:   R(p) = p × (–0.04p + 14,250) = –0.04p² + 14,250p Step 2. Identify the Vertex of the Quadratic. Since the revenue function is a quadratic that opens downward (because the coefficient of p² is –0.04), its maximum occurs at the vertex. The p-coordinate of the vertex is given by:   p = –b / (2a) Here, a = –0.04 and b = 14,250. Thus:   p = –14,250 / (2 × –0.04) = 14,250 / 0.08 Step 3. Compute p. Divide 14,250 by 0.08:   p = 14,250 ÷ 0.08 = 178,125 Conclusion: CJ Real Estate Co. should sell its houses at approximately $178,125 each to achieve the largest revenue.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To maximize revenue, you first need to identify the revenue function, which is given by \( R(q) = p \cdot q \). By substituting the demand equation for \( q \) in terms of \( p \), you get \( R(p) = p \cdot (-0.04p + 14250) \), which simplifies to \( R(p) = -0.04p^2 + 14250p \). The maximum revenue occurs at the vertex of this downward-opening parabola, which can be found using the formula \( p = -\frac{b}{2a} \). Here, \( a = -0.04 \) and \( b = 14250 \), so the optimal price is \( p = \frac{14250}{0.08} = 178125 \). After calculating the price, you can easily determine the maximum revenue using this optimized price in the revenue function. It’s crucial to analyze your findings further to ensure you're maximizing revenue as gaining insight into pricing strategies can significantly impact how successful CJ Real Estate Co. might be in their new housing development. Keep in mind the pricing has to remain competitive, so it's worth exploring what similar developments are charging!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad