Pregunta
upstudy study bank question image url

4* 1 paint What is the inverse of \( h(x)=7 x^{2}+8 \) with the domain restriction \( x \geq 0 \) ? A \( h^{-1}(x)=\sqrt{\frac{x-1}{9}} \) B. \( h^{-1}(x)=\frac{\sqrt{x-1}}{h} \) c \( h^{-1}(x)=\frac{\sqrt{x+1}}{y} \) D. \( x^{-1}(x)=\sqrt{x-7}+8 \) A B C D)

Ask by Warren Campbell. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The inverse function is \( h^{-1}(x) = \sqrt{\frac{x - 8}{7}} \), which is not among the provided options.

Solución

To find the inverse of the function \( h(x) = 7x^2 + 8 \) with the domain restriction \( x \geq 0 \), we will follow these steps: 1. **Set \( y = h(x) \)**: \[ y = 7x^2 + 8 \] 2. **Solve for \( x \)** in terms of \( y \): - First, isolate the term with \( x \): \[ y - 8 = 7x^2 \] - Next, divide both sides by 7: \[ \frac{y - 8}{7} = x^2 \] - Finally, take the square root of both sides. Since \( x \geq 0 \), we take the positive root: \[ x = \sqrt{\frac{y - 8}{7}} \] 3. **Express the inverse function**: - We can now express the inverse function \( h^{-1}(x) \) by replacing \( y \) with \( x \): \[ h^{-1}(x) = \sqrt{\frac{x - 8}{7}} \] Now, let's compare this result with the provided options: A. \( h^{-1}(x) = \sqrt{\frac{x-1}{9}} \) B. \( h^{-1}(x) = \frac{\sqrt{x-1}}{h} \) C. \( h^{-1}(x) = \frac{\sqrt{x+1}}{y} \) D. \( x^{-1}(x) = \sqrt{x-7} + 8 \) None of the options match the derived inverse function \( h^{-1}(x) = \sqrt{\frac{x - 8}{7}} \). Thus, the correct answer is not listed among the options provided.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the inverse of the function \( h(x) = 7x^2 + 8 \) with a domain restriction of \( x \geq 0 \), we start by setting \( y = h(x) \). This gives us the equation \( y = 7x^2 + 8 \). To find the inverse, we solve for \( x \): \[ y - 8 = 7x^2 \] \[ x^2 = \frac{y - 8}{7} \] Since \( x \) must be non-negative due to our domain restriction, we take the positive square root: \[ x = \sqrt{\frac{y - 8}{7}} \] This gives us the inverse function: \[ h^{-1}(y) = \sqrt{\frac{y - 8}{7}} \] Substituting back to use \( x \) instead of \( y \), we have: \[ h^{-1}(x) = \sqrt{\frac{x - 8}{7}} \] Now, looking at your answer choices, it seems none directly match this expression. However, option A seems like it might have a typo, as it lists '1' in place of '8'. Make sure to check that answer for accuracy. When solving equations involving inverse functions, a common mistake is forgetting to switch the variables correctly after finding the expression; always ensure the notation aligns! Another is failing to account for domain restrictions; remember that if \( x \) was initially restricted, \( h^{-1}(x) \) must also respect changes in values allowed across the domains.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad