6. Given that \( \int_{1}^{5} f(x) d x=8, \int_{4}^{5} f(x) d x=5 \) and \( \int_{1}^{8} f(x) d x=15 \). Show that \( \int_{4}^{8} f(x) d x=12 \).
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To find \( \int_{4}^{8} f(x) d x \), we can use the properties of definite integrals. We know that: \[ \int_{1}^{8} f(x) d x = \int_{1}^{4} f(x) d x + \int_{4}^{8} f(x) d x \] From the information provided, we have: \[ \int_{1}^{8} f(x) d x = 15 \] Next, we can express \( \int_{1}^{4} f(x) d x \) using the values we know. Using the given integral values: \[ \int_{1}^{5} f(x) d x = 8 \] We can break it down further: \[ \int_{1}^{5} f(x) d x = \int_{1}^{4} f(x) d x + \int_{4}^{5} f(x) d x \] Substituting the known integrals: \[ 8 = \int_{1}^{4} f(x) d x + 5 \] This leads us to: \[ \int_{1}^{4} f(x) d x = 8 - 5 = 3 \] Now substituting back into our equation for \( \int_{1}^{8} f(x) d x \): \[ 15 = \int_{1}^{4} f(x) d x + \int_{4}^{8} f(x) d x \] Substituting \( \int_{1}^{4} f(x) d x \): \[ 15 = 3 + \int_{4}^{8} f(x) d x \] Thus, we find: \[ \int_{4}^{8} f(x) d x = 15 - 3 = 12 \] Therefore, we have shown that: \[ \int_{4}^{8} f(x) d x = 12 \]
preguntas relacionadas
