Area \( =625 \pi \mathrm{in}^{2} \) Radius \( = \) Diameter \( = \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find the radius and diameter from the area of a circle, we can use the formula for the area, \( A = \pi r^2 \). Given the area \( A = 625\pi \mathrm{in}^2 \), we can set up the equation: \[ 625\pi = \pi r^2. \] By dividing both sides by \( \pi \), we get \( 625 = r^2 \). Taking the square root of both sides, we have \( r = 25 \mathrm{in} \). The diameter \( d \) is twice the radius, so \( d = 2r = 50 \mathrm{in} \). Radius \( = 25 \mathrm{in}, \) Diameter \( = 50 \mathrm{in}. \)
