Pregunta
upstudy study bank question image url

A planet has a mass of \( 8 \times 10^{\wedge} 24 \mathrm{~kg} \) and a radius of 6800 km . A satellite is launched into an orbit at a height of \( 36,000 \mathrm{~km} \) above the planet's surface. Calculate the time period of the satellite.

Ask by Wagner Hall. in Canada
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The satellite's orbital period is approximately 7.62 × 10⁴ seconds, or about 21 hours.

Solución

We start with Kepler’s third law for circular orbits. The orbital period T is given by   T = 2π √[(R + h)³ / (G M)], where   G = 6.67 × 10⁻¹¹ m³ kg⁻¹ s⁻² (gravitational constant),   M = 8 × 10²⁴ kg (mass of the planet),   R = 6800 km = 6.8 × 10⁶ m (radius of the planet),   h = 36,000 km = 3.6 × 10⁷ m (height of the satellite above the surface). Step 1. Compute the orbital radius:   r = R + h = 6.8 × 10⁶ m + 3.6 × 10⁷ m = 4.28 × 10⁷ m. Step 2. Calculate GM:   G M = (6.67 × 10⁻¹¹ m³/kg/s²)(8 × 10²⁴ kg)      = 5.336 × 10¹⁴ m³/s². Step 3. Compute r³:   r³ = (4.28 × 10⁷ m)³.   First, 4.28³ ≈ 78.4, and (10⁷)³ = 10²¹, so:     r³ ≈ 78.4 × 10²¹ = 7.84 × 10²² m³. Step 4. Substitute into the period equation:   T = 2π √[(7.84 × 10²² m³) / (5.336 × 10¹⁴ m³/s²)]. Step 5. Evaluate the fraction inside the square root:   (7.84 × 10²²) / (5.336 × 10¹⁴) ≈ 1.468 × 10⁸ s². Step 6. Take the square root:   √(1.468 × 10⁸) ≈ 1.212 × 10⁴ s. Step 7. Multiply by 2π:   T ≈ 2π (1.212 × 10⁴ s) ≈ 6.28 × 1.212 × 10⁴ s ≈ 7.62 × 10⁴ s. Step 8. Convert seconds to hours for clarity:   T ≈ 7.62 × 10⁴ s / 3600 s/hr ≈ 21.2 hr. Thus, the satellite’s orbital period is approximately 7.62 × 10⁴ seconds, or about 21 hours.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the time period of the satellite in orbit around the planet, we can use Kepler's third law of planetary motion, which states that the square of the orbital period (T) is proportional to the cube of the semi-major axis (r) of its orbit. The equation can be expressed as: \[ T = 2\pi \sqrt{\frac{r^3}{GM}} \] Where: - \( G \) is the gravitational constant, approximately \( 6.674 \times 10^{-11} \, \mathrm{N \cdot m^2/kg^2} \) - \( M \) is the mass of the planet - \( r \) is the distance from the center of the planet to the satellite Given the parameters: - Mass of the planet, \( M = 8 \times 10^{24} \, \mathrm{kg} \) - Radius of the planet, \( R = 6800 \, \mathrm{km} = 6.8 \times 10^{6} \, \mathrm{m} \) - Height of the satellite above the surface, \( h = 36,000 \, \mathrm{km} = 3.6 \times 10^{7} \, \mathrm{m} \) The total distance \( r \) from the center of the planet to the satellite is: \[ r = R + h = 6.8 \times 10^{6} \, \mathrm{m} + 3.6 \times 10^{7} \, \mathrm{m} = 4.24 \times 10^{7} \, \mathrm{m} \] Now we can substitute these values into the formula to find \( T \): 1. Calculate \( r^3 \): \[ r^3 = (4.24 \times 10^{7})^3 \approx 7.628 \times 10^{22} \, \mathrm{m}^3 \] 2. Substitute into the equation: \[ T = 2\pi \sqrt{\frac{7.628 \times 10^{22}}{(6.674 \times 10^{-11})(8 \times 10^{24})}} \] 3. Calculate the denominator: \[ GM \approx (6.674 \times 10^{-11})(8 \times 10^{24}) \approx 5.3392 \times 10^{14} \, \mathrm{m}^3/\mathrm{s}^2 \] 4. Now calculate the expression: \[ T = 2\pi \sqrt{\frac{7.628 \times 10^{22}}{5.3392 \times 10^{14}}} \] \[ T = 2\pi \sqrt{142.8 \times 10^{8}} \approx 2\pi \sqrt{1.428 \times 10^{10}} \approx 2\pi \times 119.5 \times 10^{5} \] \[ T \approx 2 \times 3.14159 \times 119.5 \times 10^5 \approx 7510000 \, \mathrm{s} \approx 7510 \, \mathrm{min} \approx 125.2 \text{ hours} \] Thus, the time period of the satellite is approximately 125.2 hours.

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad