Write the equation of the line in slope-intercept form with the given point and slope or two points. \begin{tabular}{ll|l} 14. \( (-7,13) \); slope \( =-2 \) & 15. \( (-4,6) \); slope \( =-\frac{3}{4} \) & 14.\end{tabular} \( \begin{array}{lll}\text { 16. }(-5,-11) \text { and }(-2,1) & \text { 17. }(-6,8) \text { and }(3,-7) & 17 .\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To write the equation of the line in slope-intercept form \(y = mx + b\): The first situation gives us the point \((-7, 13)\) and a slope of \(-2\). Plugging the slope into the equation gives us \(y = -2x + b\). To find \(b\), substitute the point: \(13 = -2(-7) + b\), hence \(13 = 14 + b\) leading us to \(b = -1\). So, the equation is \(y = -2x - 1\). For the second case, with the points \((-5, -11)\) and \((-2, 1)\), first, calculate the slope \(m\): \[m = \frac{1 - (-11)}{-2 - (-5)} = \frac{12}{3} = 4.\] Now, using point-slope form with point \((-5, -11)\): \[y + 11 = 4(x + 5).\] Distributing gives \(y + 11 = 4x + 20\); thus \(y = 4x + 9\). Now you've got two excellent line equations in slope-intercept form!
