Pregunta
upstudy study bank question image url

5) \( \log _{2} x+\log _{x} 16 \)

Ask by Mckenzie Lyons. in South Africa
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The expression simplifies to \( \log_{2} x + \frac{4}{\log_{2} x} \).

Solución

To simplify the expression \( \log_{2} x + \log_{x} 16 \), let's break it down step by step. ### Step 1: Express Both Logarithms with the Same Base First, notice that both logarithms can be expressed in terms of base 2: 1. \( \log_{2} x \) is already in base 2. 2. To change the base of \( \log_{x} 16 \) to base 2, use the **Change of Base Formula**: \[ \log_{x} 16 = \frac{\log_{2} 16}{\log_{2} x} \] Since \( 16 = 2^4 \), we have: \[ \log_{2} 16 = 4 \] Therefore: \[ \log_{x} 16 = \frac{4}{\log_{2} x} \] ### Step 2: Combine the Expressions Now, substitute the expression for \( \log_{x} 16 \) back into the original equation: \[ \log_{2} x + \log_{x} 16 = \log_{2} x + \frac{4}{\log_{2} x} \] ### Step 3: Simplify the Expression Let \( y = \log_{2} x \). The expression becomes: \[ y + \frac{4}{y} \] This is a simplified form of the original expression. ### Additional Insight: Minimizing the Expression If you're interested in finding the minimum value of the expression \( y + \frac{4}{y} \), you can use the **Arithmetic Mean-Geometric Mean (AM-GM) Inequality**: \[ y + \frac{4}{y} \geq 2\sqrt{y \cdot \frac{4}{y}} = 2\sqrt{4} = 4 \] Equality occurs when \( y = \frac{4}{y} \), which implies \( y = 2 \). Therefore, the minimum value of the expression is **4** when \( \log_{2} x = 2 \), or equivalently, when \( x = 4 \). ### Final Simplified Form \[ \log_{2} x + \log_{x} 16 = \log_{2} x + \frac{4}{\log_{2} x} \] Or, using \( y = \log_{2} x \): \[ y + \frac{4}{y} \] ### Summary The expression \( \log_{2} x + \log_{x} 16 \) simplifies to \( \log_{2} x + \frac{4}{\log_{2} x} \). Additionally, its minimum value is 4 when \( x = 4 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the expression \( \log _{2} x+\log _{x} 16 \), we can start by manipulating the logarithms. First, we note that \( \log_{x} 16 \) can be rewritten using the change of base formula: \[ \log_{x} 16 = \frac{\log_{2} 16}{\log_{2} x} \] Since \( \log_{2} 16 = 4 \) (because \( 2^4 = 16 \)), we have: \[ \log_{x} 16 = \frac{4}{\log_{2} x} \] Now, substitute back into the original expression: \[ \log_{2} x + \frac{4}{\log_{2} x} \] Let’s set \( y = \log_{2} x \). Then our expression simplifies to: \[ y + \frac{4}{y} \] To simplify this further, we can find a common denominator: \[ \frac{y^2 + 4}{y} \] Now, to find the minimum value of \( y + \frac{4}{y} \), we can apply the AM-GM inequality: \[ \frac{y + \frac{4}{y}}{2} \geq \sqrt{y \cdot \frac{4}{y}} = \sqrt{4} = 2 \] So: \[ y + \frac{4}{y} \geq 4 \] Equality holds when \( y = 2 \), which means \( \log_{2} x = 2 \), so \( x = 2^2 = 4 \). In summary, the value of \( \log_{2} x + \log_{x} 16 \) reaches its minimum of 4 when \( x = 4 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad