5) \( \log _{2} x+\log _{x} 16 \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To solve the expression \( \log _{2} x+\log _{x} 16 \), we can start by manipulating the logarithms. First, we note that \( \log_{x} 16 \) can be rewritten using the change of base formula: \[ \log_{x} 16 = \frac{\log_{2} 16}{\log_{2} x} \] Since \( \log_{2} 16 = 4 \) (because \( 2^4 = 16 \)), we have: \[ \log_{x} 16 = \frac{4}{\log_{2} x} \] Now, substitute back into the original expression: \[ \log_{2} x + \frac{4}{\log_{2} x} \] Let’s set \( y = \log_{2} x \). Then our expression simplifies to: \[ y + \frac{4}{y} \] To simplify this further, we can find a common denominator: \[ \frac{y^2 + 4}{y} \] Now, to find the minimum value of \( y + \frac{4}{y} \), we can apply the AM-GM inequality: \[ \frac{y + \frac{4}{y}}{2} \geq \sqrt{y \cdot \frac{4}{y}} = \sqrt{4} = 2 \] So: \[ y + \frac{4}{y} \geq 4 \] Equality holds when \( y = 2 \), which means \( \log_{2} x = 2 \), so \( x = 2^2 = 4 \). In summary, the value of \( \log_{2} x + \log_{x} 16 \) reaches its minimum of 4 when \( x = 4 \).