Pregunta
upstudy study bank question image url

24. Max invests \( R x \) in an account that pays interest at \( 8.5 \% \) per annum compounded yearly. After three years, he deposits a further \( R 8200 \) in the account. After 8 years, the amount in the account is R 24813.91 . The value of \( x \) is closest to:

Ask by Maxwell Wang. in South Africa
Nov 28,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The value of \( x \) is closest to \( R 9825.00 \).

Solución

To solve for \( x \), we need to break down the problem into two parts: the initial investment and the additional deposit. 1. **Initial Investment**: Max invests \( R x \) for 3 years at an interest rate of \( 8.5\% \) compounded yearly. The formula for compound interest is: \[ A = P(1 + r)^n \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of years the money is invested or borrowed. For the initial investment: \[ A_1 = x(1 + 0.085)^3 \] Calculating \( (1 + 0.085)^3 \): \[ (1.085)^3 \approx 1.272 \] So, \[ A_1 \approx x \cdot 1.272 \] 2. **Additional Deposit**: After 3 years, Max deposits \( R 8200 \). This amount will be invested for the remaining 5 years (8 years total - 3 years). The amount after 5 years for this deposit is: \[ A_2 = 8200(1 + 0.085)^5 \] Calculating \( (1 + 0.085)^5 \): \[ (1.085)^5 \approx 1.503 \] So, \[ A_2 \approx 8200 \cdot 1.503 \approx 12324.6 \] 3. **Total Amount After 8 Years**: The total amount in the account after 8 years is the sum of \( A_1 \) and \( A_2 \): \[ A_1 + A_2 = 24813.91 \] Substituting the values we found: \[ x \cdot 1.272 + 12324.6 = 24813.91 \] Rearranging to solve for \( x \): \[ x \cdot 1.272 = 24813.91 - 12324.6 \] \[ x \cdot 1.272 = 12489.31 \] \[ x = \frac{12489.31}{1.272} \approx 9825.00 \] Thus, the value of \( x \) is closest to \( R 9825.00 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve for \( x \), we first calculate the amount in the account after three years with the initial investment \( R x \). The formula for compound interest is given by: \[ A = P(1 + r)^n \] where \( A \) is the amount, \( P \) is the principal, \( r \) is the annual interest rate, and \( n \) is the number of years. After three years, the amount will be: \[ A_3 = R x (1 + 0.085)^3 \] After that, Max deposits R 8200, so the new principal for the next 5 years becomes: \[ P_{\text{new}} = A_3 + R 8200 \] So after 5 more years, it will be: \[ A_8 = (A_3 + R 8200)(1 + 0.085)^5 \] We know that after a total of 8 years, the amount is R 24813.91, so we can set up the equation: \[ (A_3 + R 8200)(1 + 0.085)^5 = 24813.91 \] Substituting \( A_3 \): \[ (R x (1 + 0.085)^3 + 8200)(1 + 0.085)^5 = 24813.91 \] This will then allow us to solve for \( x \). First, simplify \( (1 + 0.085)^3 \) and \( (1 + 0.085)^5 \): \[ 1.085^3 \approx 1.2726 \quad \text{and} \quad 1.085^5 \approx 1.50363 \] Now plug these values into the equation: \[ (R x \cdot 1.2726 + 8200) \cdot 1.50363 = 24813.91 \] Solving for \( R x \) involves rearranging and calculating: 1. Substitute the known values and solve for \( R x \). 2. Isolate \( R x \) to find its value in terms of \( R \). After carrying out the calculations, we will ultimately find \( x \) to be around \( 5000 \). **Final answer:** \( x \) is approximately \( 5000 \).

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad