Pregunta
\( \therefore x=-4 \) Solve \( =0 \) or \( x \) and \( y \) simultanesus \( 2 x+y=5 \) \( x y=6 \)
Ask by Morrison Garrett. in South Africa
Feb 28,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The system of equations \(2x + y = 5\) and \(xy = 6\) has no real solutions.
Solución
Solve the system of equations \( 2x+y=5;x*y=6 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}2x+y=5\\xy=6\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}y=5-2x\\xy=6\end{array}\right.\)
- step2: Substitute the value of \(y:\)
\(x\left(5-2x\right)=6\)
- step3: Expand the expression:
\(5x-2x^{2}=6\)
- step4: Move the expression to the left side:
\(5x-2x^{2}-6=0\)
- step5: Rewrite in standard form:
\(-2x^{2}+5x-6=0\)
- step6: Multiply both sides:
\(2x^{2}-5x+6=0\)
- step7: Solve using the quadratic formula:
\(x=\frac{5\pm \sqrt{\left(-5\right)^{2}-4\times 2\times 6}}{2\times 2}\)
- step8: Simplify the expression:
\(x=\frac{5\pm \sqrt{\left(-5\right)^{2}-4\times 2\times 6}}{4}\)
- step9: Simplify the expression:
\(x=\frac{5\pm \sqrt{-23}}{4}\)
- step10: The expression is undefined:
\(x \notin \mathbb{R}\)
- step11: The system of equations has no solution in the set of real numbers:
\(\left(x,y\right) \notin \mathbb{R}^{2}\)
- step12: Alternative Form:
\(\textrm{No real solution}\)
The system of equations \(2x+y=5\) and \(xy=6\) does not have any real solutions.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Bonus Knowledge
To solve the system of equations given by \(2x + y = 5\) and \(xy = 6\), start by expressing \(y\) in terms of \(x\) using the linear equation: \(y = 5 - 2x\). Then, substitute this value into the second equation to get \(x(5 - 2x) = 6\). This simplifies to a quadratic equation: \(2x^2 - 5x + 6 = 0\). Factoring or using the quadratic formula will yield the values of \(x\). Once you find \(x\), use the expression \(y = 5 - 2x\) to find the corresponding values of \(y\). Make sure both equations are satisfied with your solutions! Happy solving!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium