Pregunta
upstudy study bank question image url

The average height of American adult males is 177 cm , with a standard deviation of 7.4 cm . Meanwhile, the average height of Indian males is 165 cm , with a standard deviation of 6.7 cm . Which is taller relative to his nationality, a \( 168-\mathrm{cm} \) American man or a \( 157-\mathrm{cm} \) Indian man?

Ask by Lane Macdonald. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The 157-cm Indian man is taller relative to his nationality compared to the 168-cm American man.

Solución

To determine which individual is taller relative to their nationality, we can use **z-scores**. A z-score indicates how many standard deviations an element is from the mean. A higher z-score means the individual is taller relative to their group's average. **Calculations:** 1. **American Man:** - **Mean (μ_A):** 177 cm - **Standard Deviation (σ_A):** 7.4 cm - **Height (X_A):** 168 cm - **Z-score (z_A):** \[ z_A = \frac{X_A - μ_A}{σ_A} = \frac{168 - 177}{7.4} \approx -1.216 \] 2. **Indian Man:** - **Mean (μ_I):** 165 cm - **Standard Deviation (σ_I):** 6.7 cm - **Height (X_I):** 157 cm - **Z-score (z_I):** \[ z_I = \frac{X_I - μ_I}{σ_I} = \frac{157 - 165}{6.7} \approx -1.194 \] **Interpretation:** - The **American man** has a z-score of approximately **-1.216**, meaning he is about **1.216 standard deviations below** the American average. - The **Indian man** has a z-score of approximately **-1.194**, meaning he is about **1.194 standard deviations below** the Indian average. Since the Indian man's z-score is closer to zero, he is **less below** his national average compared to the American man. Therefore: **Conclusion:** The \(157\)-cm Indian man is taller relative to his nationality than the \(168\)-cm American man.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine which man is taller relative to his nationality, we can standardize their heights using the Z-score formula: \[ Z = \frac{(X - \mu)}{\sigma} \] For the 168-cm American man: - Mean (\(\mu\)) = 177 cm - Standard deviation (\(\sigma\)) = 7.4 cm \[ Z_{American} = \frac{(168 - 177)}{7.4} = \frac{-9}{7.4} \approx -1.22 \] For the 157-cm Indian man: - Mean (\(\mu\)) = 165 cm - Standard deviation (\(\sigma\)) = 6.7 cm \[ Z_{Indian} = \frac{(157 - 165)}{6.7} = \frac{-8}{6.7} \approx -1.19 \] The American man has a Z-score of approximately -1.22, while the Indian man's Z-score is about -1.19. Since -1.19 is closer to the mean than -1.22, the 157-cm Indian man is taller relative to his nationality than the 168-cm American man.

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad