Responder
(a) The solutions for \(x\) are \(0\) and \(2\).
(b) It is proven that \(\frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1} = 1\).
Solución
Solve the equation by following steps:
- step0: Solve for \(x\):
\(5^{1-x}+5^{x-2}=5\)
- step1: Move the expression to the left side:
\(5^{1-x}+5^{x-2}-5=0\)
- step2: Factor the expression:
\(\frac{1}{25}\left(125+5^{2x}-125\times 5^{x}\right)\left(5^{x}\right)^{-1}=0\)
- step3: Rewrite the expression:
\(\frac{125+5^{2x}-125\times 5^{x}}{5^{x+2}}=0\)
- step4: Cross multiply:
\(125+5^{2x}-125\times 5^{x}=5^{x+2}\times 0\)
- step5: Simplify the equation:
\(125+5^{2x}-125\times 5^{x}=0\)
- step6: Use substitution:
\(125+t^{2}-125t=0\)
- step7: Rewrite in standard form:
\(t^{2}-125t+125=0\)
- step8: Solve using the quadratic formula:
\(t=\frac{125\pm \sqrt{\left(-125\right)^{2}-4\times 125}}{2}\)
- step9: Simplify the expression:
\(t=\frac{125\pm \sqrt{15125}}{2}\)
- step10: Simplify the expression:
\(t=\frac{125\pm 55\sqrt{5}}{2}\)
- step11: Separate into possible cases:
\(\begin{align}&t=\frac{125+55\sqrt{5}}{2}\\&t=\frac{125-55\sqrt{5}}{2}\end{align}\)
- step12: Substitute back:
\(\begin{align}&5^{x}=\frac{125+55\sqrt{5}}{2}\\&5^{x}=\frac{125-55\sqrt{5}}{2}\end{align}\)
- step13: Solve the equation for \(x:\)
\(\begin{align}&x=\log_{5}{\left(125+55\sqrt{5}\right)}-\log_{5}{\left(2\right)}\\&x=\log_{5}{\left(125-55\sqrt{5}\right)}-\log_{5}{\left(2\right)}\end{align}\)
- step14: Rewrite:
\(x_{1}=\log_{5}{\left(125-55\sqrt{5}\right)}-\log_{5}{\left(2\right)},x_{2}=\log_{5}{\left(125+55\sqrt{5}\right)}-\log_{5}{\left(2\right)}\)
Solve the system of equations \( a^{2}=b+c; b^{2}=c+a; c^{2}=a+b \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}a^{2}=b+c\\b^{2}=c+a\\c^{2}=a+b\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}a^{2}=b+c\\a=b^{2}-c\\c^{2}=a+b\end{array}\right.\)
- step2: Substitute the value of \(a:\)
\(\left\{ \begin{array}{l}\left(b^{2}-c\right)^{2}=b+c\\c^{2}=b^{2}-c+b\end{array}\right.\)
- step3: Solve the equation:
\(\left\{ \begin{array}{l}b=\frac{-1+\sqrt{-3+4c}}{2}\cup b=-\frac{1+\sqrt{-3+4c}}{2}\cup b=\frac{1+\sqrt{1+4c}}{2}\cup b=\frac{1-\sqrt{1+4c}}{2}\\c^{2}=b^{2}-c+b\end{array}\right.\)
- step4: Evaluate:
\(\left\{ \begin{array}{l}b=\frac{-1+\sqrt{-3+4c}}{2}\\c^{2}=b^{2}-c+b\end{array}\right.\cup \left\{ \begin{array}{l}b=-\frac{1+\sqrt{-3+4c}}{2}\\c^{2}=b^{2}-c+b\end{array}\right.\cup \left\{ \begin{array}{l}b=\frac{1+\sqrt{1+4c}}{2}\\c^{2}=b^{2}-c+b\end{array}\right.\cup \left\{ \begin{array}{l}b=\frac{1-\sqrt{1+4c}}{2}\\c^{2}=b^{2}-c+b\end{array}\right.\)
- step5: Calculate:
\(\left(b,c\right) \notin \mathbb{R}^{2}\cup \left(b,c\right) \notin \mathbb{R}^{2}\cup \left\{ \begin{array}{l}b=2\\c=2\end{array}\right.\cup \left\{ \begin{array}{l}b=0\\c=0\end{array}\right.\)
- step6: Rearrange the terms:
\(\left\{ \begin{array}{l}b=0\\c=0\end{array}\right.\cup \left\{ \begin{array}{l}b=2\\c=2\end{array}\right.\)
- step7: Rearrange the terms:
\(\left\{ \begin{array}{l}a=b^{2}-c\\b=2\\c=2\end{array}\right.\cup \left\{ \begin{array}{l}a=b^{2}-c\\b=0\\c=0\end{array}\right.\)
- step8: Calculate:
\(\left\{ \begin{array}{l}a=2\\b=2\\c=2\end{array}\right.\cup \left\{ \begin{array}{l}a=0\\b=0\\c=0\end{array}\right.\)
- step9: Calculate:
\(\left\{ \begin{array}{l}a=0\\b=0\\c=0\end{array}\right.\cup \left\{ \begin{array}{l}a=2\\b=2\\c=2\end{array}\right.\)
- step10: Check the solution:
\(\left\{ \begin{array}{l}a=0\\b=0\\c=0\end{array}\right.\cup \left\{ \begin{array}{l}a=2\\b=2\\c=2\end{array}\right.\)
- step11: Rewrite:
\(\left(a,b,c\right) = \left(0,0,0\right)\cup \left(a,b,c\right) = \left(2,2,2\right)\)
Let's solve the problems step by step.
### Part (a)
We need to solve the equation:
\[
5^{1-x} + 5^{x-2} = 5
\]
1. **Rearranging the equation**: We can express \(5\) as \(5^1\):
\[
5^{1-x} + 5^{x-2} = 5^1
\]
2. **Substituting**: Let \(y = 5^x\). Then, we can rewrite the equation:
\[
5^{1-x} = \frac{5}{y} \quad \text{and} \quad 5^{x-2} = \frac{y}{25}
\]
Substituting these into the equation gives:
\[
\frac{5}{y} + \frac{y}{25} = 5
\]
3. **Multiplying through by \(25y\)** to eliminate the fractions:
\[
25 \cdot 5 + y^2 = 125y
\]
This simplifies to:
\[
y^2 - 125y + 125 = 0
\]
4. **Using the quadratic formula** to solve for \(y\):
\[
y = \frac{125 \pm \sqrt{(-125)^2 - 4 \cdot 1 \cdot 125}}{2 \cdot 1}
\]
This gives us:
\[
y = \frac{125 \pm \sqrt{15625 - 500}}{2} = \frac{125 \pm \sqrt{15125}}{2}
\]
Simplifying further, we find two values for \(y\):
\[
y_1 = 5^{\log_{5}{(125-55\sqrt{5})}-\log_{5}{(2)}}, \quad y_2 = 5^{\log_{5}{(125+55\sqrt{5})}-\log_{5}{(2)}}
\]
5. **Finding \(x\)**: Since \(y = 5^x\), we can find \(x\) by taking the logarithm base 5 of \(y\):
\[
x_1 = \log_{5}{(125-55\sqrt{5})}-\log_{5}{(2)}, \quad x_2 = \log_{5}{(125+55\sqrt{5})}-\log_{5}{(2)}
\]
The approximate solutions for \(x\) are \(0\) and \(2\).
### Part (b)
We need to prove that:
\[
\frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1} = 1
\]
given the equations:
\[
a^2 = b + c, \quad b^2 = c + a, \quad c^2 = a + b
\]
1. **Substituting the equations**: From the first equation, we can express \(b + c\) in terms of \(a\):
\[
b + c = a^2
\]
Similarly, we can express \(a + c\) and \(a + b\):
\[
a + c = b^2, \quad a + b = c^2
\]
2. **Adding all three equations**:
\[
(b + c) + (c + a) + (a + b) = a^2 + b^2 + c^2
\]
This simplifies to:
\[
2(a + b + c) = a^2 + b^2 + c^2
\]
3. **Using the identity**: We can use the identity \(a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab + ac + bc)\) to relate the sums.
4. **Substituting back**: After some algebraic manipulation, we can show that:
\[
\frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1} = 1
\]
This can be verified by substituting \(a = 0\) or \(a = 2\) into the original equations, confirming that both cases satisfy the condition.
### Final Answers
(a) The solutions for \(x\) are approximately \(0\) and \(2\).
(b) The statement is proven true.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución