Pregunta
upstudy study bank question image url

Government workers: The Bureau of Labor Statistics reported that \( 15 \% \) of U.S. nonfarm workers are government employees. A randorn sample of 35 workers is drawn. Use the excel spreadsheet as needed. Part: \( 0 / 5 \) Part 1 of 5 (a) Is it appropriate to use the normal approximation to find the probability that less than \( 25 \% \) of the individuals in the sample are government employees? If so, find the probability. If not, explain why not. It (Choose one) \( \mathbf{v} \) appropriate to use the normal curve, since \( n p= \) is not is not

Ask by Morrison Bernard. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

It is appropriate to use the normal approximation because both \( np = 5.25 \) and \( n(1 - p) = 29.75 \) are greater than 5. Using the normal approximation with continuity correction, the probability that less than 25% of the sample are government employees is approximately 93.8%.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Beyond the Answer

To determine if it's appropriate to use the normal approximation for a binomial distribution in this case, we need to check the conditions for the Central Limit Theorem, specifically if both \(np\) and \(n(1-p)\) are greater than 5. Here, \(n = 35\) and \(p = 0.15\). Calculating: \[ np = 35 \times 0.15 = 5.25 \] \[ n(1-p) = 35 \times (1 - 0.15) = 35 \times 0.85 = 29.75 \] Since both \(np\) and \(n(1-p)\) are greater than 5, it is **appropriate** to use the normal approximation. Now, we need the standard deviation and mean: - Mean \( \mu = np = 5.25 \) - Standard deviation \( \sigma = \sqrt{np(1-p)} = \sqrt{35 \times 0.15 \times 0.85} \approx 2.635 \) To find the probability that less than 25% of the individuals in the sample are government employees: \( 25\% \) of \( 35 \) is \( 8.75 \) workers. Since we can only have whole workers, we look at \( 8 \) workers. Now we'll apply the normal approximation \( X \sim N(5.25, 2.635^2) \): Using the z-score formula: \[ Z = \frac{X - \mu}{\sigma} = \frac{8 - 5.25}{2.635} \approx 1.042 \] Using a z-table or calculator, we find \( P(Z < 1.042) \approx 0.8508 \). Therefore, the probability that less than \( 25\% \) of the sample are government employees is approximately \( 0.8508 \) or \( 85.08\% \).

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad