Pregunta
upstudy study bank question image url

Find the average value of the following function over the given interval. Draw a graph of the function and indicate the average value. \[ f(x)=x(x-1) ;[3,5] \] The average value of the function is \( f=\square \).

Ask by Chambers Edwards. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The average value of the function \( f(x) = x(x-1) \) over the interval \([3,5]\) is \( 12\frac{1}{3} \).

Solución

To find the average value of the function \( f(x) = x(x-1) \) over the interval \([3,5]\), we need to calculate the definite integral of the function over the interval and then divide by the length of the interval. The average value of a function \( f(x) \) over an interval \([a,b]\) is given by the formula: \[ \text{Average Value} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \] In this case, the function is \( f(x) = x(x-1) \) and the interval is \([3,5]\). First, let's calculate the definite integral of \( f(x) \) over the interval \([3,5]\): \[ \int_{3}^{5} x(x-1) \, dx \] Next, we will calculate the average value of the function over the interval \([3,5]\) using the formula: \[ \text{Average Value} = \frac{1}{5-3} \int_{3}^{5} x(x-1) \, dx \] Let's calculate the definite integral and then find the average value. Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int_{3}^{5} x\left(x-1\right) dx\) - step1: Multiply the terms: \(\int_{3}^{5} \left(x^{2}-x\right) dx\) - step2: Evaluate the integral: \(\int \left(x^{2}-x\right) dx\) - step3: Use properties of integrals: \(\int x^{2} dx+\int -x dx\) - step4: Evaluate the integral: \(\frac{x^{3}}{3}+\int -x dx\) - step5: Evaluate the integral: \(\frac{x^{3}}{3}-\frac{x^{2}}{2}\) - step6: Return the limits: \(\left(\frac{x^{3}}{3}-\frac{x^{2}}{2}\right)\bigg |_{3}^{5}\) - step7: Calculate the value: \(\frac{74}{3}\) The definite integral of \( f(x) = x(x-1) \) over the interval \([3,5]\) is \( \frac{74}{3} \) or \( 24\frac{2}{3} \) or \( 24.\\dot{6} \). Now, let's calculate the average value of the function over the interval \([3,5]\) using the formula: \[ \text{Average Value} = \frac{1}{5-3} \int_{3}^{5} x(x-1) \, dx \] Substitute the value of the definite integral into the formula: \[ \text{Average Value} = \frac{1}{2} \times \frac{74}{3} \] \[ \text{Average Value} = \frac{74}{6} \] \[ \text{Average Value} = 12\frac{1}{3} \] Therefore, the average value of the function \( f(x) = x(x-1) \) over the interval \([3,5]\) is \( 12\frac{1}{3} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the average value of \( f(x) = x(x-1) \) over the interval \([3, 5]\), we first compute the definite integral of the function over the interval and then divide by the length of the interval. 1. Calculate the definite integral: \[ \int_{3}^{5} f(x) \, dx = \int_{3}^{5} x(x-1) \, dx = \int_{3}^{5} (x^2 - x) \, dx \] The antiderivative is: \[ \frac{x^3}{3} - \frac{x^2}{2} \] 2. Evaluate from 3 to 5: \[ \left[\frac{5^3}{3} - \frac{5^2}{2}\right] - \left[\frac{3^3}{3} - \frac{3^2}{2}\right] \] Calculating: \[ =\left[\frac{125}{3} - \frac{25}{2}\right] - \left[\frac{27}{3} - \frac{9}{2}\right] \] Finding a common denominator (6) for both parts: \[ =\left[\frac{250}{6} - \frac{75}{6}\right] - \left[\frac{54}{6} - \frac{27}{6}\right] \] \[ =\frac{175}{6} - \frac{27}{6} = \frac{148}{6} = \frac{74}{3} \] 3. Calculate the average value over the interval length, which is \(5 - 3 = 2\): \[ \text{Average value} = \frac{1}{2} \int_{3}^{5} f(x) \, dx = \frac{1}{2} \cdot \frac{74}{3} = \frac{74}{6} = \frac{37}{3} \] Therefore, the average value of the function \( f = \frac{37}{3} \) is approximately \(12.33\). Now for the graph, you would draw the parabolic curve of \( f(x) = x^2 - x \) which opens upwards. The points \( (3, f(3)) \) and \( (5, f(5)) \) would be plotted, and the average value \( y = \frac{37}{3} \) would be indicated as a horizontal line across the graph between these two points.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad