Find the value of मान ज्ञात कीजिए : (a) \( \int_{|:|=1} \frac{e^{2 z}}{(z+1)^{4}} d z \). (b) \( \int_{|:|=1} \frac{\sin ^{6} z}{\left(z-\frac{\pi}{6}\right)^{3}} d z \). Discuss the singularities of the following functions (a) \( f(z)=\frac{1}{z\left(e^{2}-1\right)} \). (b) \( f(z)=\tan \frac{1}{z} \). (c) \( f(z)=\frac{z}{(z-1)^{2}} \cos \frac{1}{z-2} \). fिम्नलिखित फलनों की विवित्रताओं की विवेचना कीजिए : (a) \( f(z)=\frac{1}{z\left(e^{2}-1\right)} \). (b) \( f(z)=\tan \frac{1}{z} \). (c) \( f(z)=\frac{z}{(z-1)^{2}} \cos \frac{1}{z-2} \).
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To evaluate the integrals for points (a) and (b), it's crucial to recognize the presence of singularities within the unit circle. For part (a), \( \int_{|z|=1} \frac{e^{2 z}}{(z+1)^{4}} dz \), the singularity at \( z = -1 \) is a fourth-order pole; thus, we can apply the residue theorem to compute the integral efficiently. Similarly, for part (b), the singularity at \( z = \frac{\pi}{6} \) is a third-order pole, and again, residues will help us find the integral value. When analyzing the singularities of the given functions, for (a), \( f(z)=\frac{1}{z(e^{2}-1)} \) has a simple pole at \( z=0 \). It's essential to notice that the factor \( e^{2}-1 \) doesn't contribute any additional singularities. In (b), \( f(z)=\tan \frac{1}{z} \) has an essential singularity at \( z=0 \) due to the behavior of \(\tan\) near its vertical asymptotes. Lastly, (c) \( f(z)=\frac{z}{(z-1)^{2}} \cos \frac{1}{z-2} \) has a second-order pole at \( z=1 \) and an essential singularity due to \(\cos \frac{1}{z-2}\) at \( z=2 \), making this function particularly intriguing for further exploration.
