Pregunta
Find the volume of the solid
formed by revolving the region
bound by the graphs of
, and
about the
-axis.
Use the disk method.
Round your answer to the nearest thousandth.
formed by revolving the region
bound by the graphs of
Use the disk method.
Ask by Hamilton Hardy. in the United States
Mar 23,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The volume of the solid is
or approximately 53.617 cubic units.
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Beyond the Answer
To find the volume
of the solid formed by revolving the region bounded by
,
, and
about the
-axis using the disk method, we first need to express
in terms of
.
The equation
can be rearranged to find
:
Next, we need to establish the limits for
. The function
crosses the
-axis when
, giving
. The volume can be computed using the disk method, where the volume
is given by the integral:
Now we calculate the integral:
- First, expand the integrand:
- Rewrite the volume integral:
- Now, calculate the integral:
- Plug in the limits:
- To combine these fractions, find a common denominator:
The least common multiple of 3 and 5 is 15. Therefore, we express each term with a denominator of 15:
- Combine the terms:
- Now we compute the final volume:
- Numerical approximation:
Rounding to the nearest thousandth, the final volume is:
Thus, the volume of the solid is:

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium