Pregunta
upstudy study bank question image url

16 Exercise C5: QUADRATIC 3-TERM (Gr10) Factorize completely 1. \( 2 x^{2}-7 x-72 \) 2. \( 2 x^{2}-5 x-12 \) 3. \( 3 x^{2}-13 x-10 \) 4. \( 2 x^{2}-9 x+9 \) 5. \( 3 x^{2}+20 x+12 \) 6. \( 2 x^{2}+7 x-15 \) 7. \( 3 x^{2}-4 x-15 \) 8. \( 7 x^{2}-10 x-8 \) 9. \( 11 x^{2}-25 x+6 \) 10. \( 15 x^{2}-7 x-2 \)

Ask by Simmons John. in South Africa
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the factorizations of the given quadratic expressions: 1. \( 2x^{2} - 7x - 72 = (2x + 9)(x - 8) \) 2. \( 2x^{2} - 5x - 12 = (2x + 3)(x - 4) \) 3. \( 3x^{2} - 13x - 10 = (3x + 2)(x - 5) \) 4. \( 2x^{2} - 9x + 9 = (2x - 3)(x - 3) \) 5. \( 3x^{2} + 20x + 12 = (3x + 2)(x + 6) \) 6. \( 2x^{2} + 7x - 15 = (2x - 3)(x + 5) \) 7. \( 3x^{2} - 4x - 15 = (3x + 5)(x - 3) \) 8. \( 7x^{2} - 10x - 8 = (7x + 4)(x - 2) \) 9. \( 11x^{2} - 25x + 6 = (11x - 2)(x - 3) \) 10. \( 15x^{2} - 7x - 2 = (5x + 1)(3x - 2) \)

Solución

Sure! Let's factorize each of the given quadratic expressions completely. ### 1. \( 2x^{2} - 7x - 72 \) **Factorization:** \[ 2x^{2} - 7x - 72 = (2x + 9)(x - 8) \] ### 2. \( 2x^{2} - 5x - 12 \) **Factorization:** \[ 2x^{2} - 5x - 12 = (2x + 3)(x - 4) \] ### 3. \( 3x^{2} - 13x - 10 \) **Factorization:** \[ 3x^{2} - 13x - 10 = (3x + 2)(x - 5) \] ### 4. \( 2x^{2} - 9x + 9 \) **Factorization:** \[ 2x^{2} - 9x + 9 = (2x - 3)(x - 3) \] ### 5. \( 3x^{2} + 20x + 12 \) **Factorization:** \[ 3x^{2} + 20x + 12 = (3x + 2)(x + 6) \] ### 6. \( 2x^{2} + 7x - 15 \) **Factorization:** \[ 2x^{2} + 7x - 15 = (2x - 3)(x + 5) \] ### 7. \( 3x^{2} - 4x - 15 \) **Factorization:** \[ 3x^{2} - 4x - 15 = (3x + 5)(x - 3) \] ### 8. \( 7x^{2} - 10x - 8 \) **Factorization:** \[ 7x^{2} - 10x - 8 = (7x + 4)(x - 2) \] ### 9. \( 11x^{2} - 25x + 6 \) **Factorization:** \[ 11x^{2} - 25x + 6 = (11x - 2)(x - 3) \] ### 10. \( 15x^{2} - 7x - 2 \) **Factorization:** \[ 15x^{2} - 7x - 2 = (5x + 1)(3x - 2) \] --- ### **Methodology for Factorization** For each quadratic expression of the form \( ax^{2} + bx + c \), follow these steps: 1. **Multiply \( a \) and \( c \):** Compute \( ac \). 2. **Find Two Numbers:** Identify two numbers \( m \) and \( n \) such that: - \( m \times n = ac \) - \( m + n = b \) 3. **Rewrite the Middle Term:** Express \( bx \) as \( mx + nx \). 4. **Factor by Grouping:** Group the terms and factor out the common factors. 5. **Write the Final Factors:** Combine the grouped factors to get the final factored form. **Example:** Let's take the first quadratic expression as an example. **Given:** \[ 2x^{2} - 7x - 72 \] 1. **Multiply \( a \) and \( c \):** \[ 2 \times (-72) = -144 \] 2. **Find Two Numbers:** We need two numbers that multiply to \(-144\) and add up to \(-7\). These numbers are \( 9 \) and \(-16\) because: \[ 9 \times (-16) = -144 \quad \text{and} \quad 9 + (-16) = -7 \] 3. **Rewrite the Middle Term:** \[ 2x^{2} + 9x - 16x - 72 \] 4. **Factor by Grouping:** \[ (2x^{2} + 9x) + (-16x - 72) = x(2x + 9) - 8(2x + 9) \] 5. **Write the Final Factors:** \[ (2x + 9)(x - 8) \] Repeat these steps for each quadratic expression to achieve complete factorization.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To factorize quadratic expressions, you can use the method of finding two numbers that multiply to give the product of the leading coefficient and the constant term while also adding up to the coefficient of the middle term. This is often a game of patience and practice! For example, in the expression \( 2 x^{2}-7 x-72 \), you would look for two numbers that multiply to \( 2 \times (-72) = -144 \) and add up to \(-7\). Once you find those numbers, you can rewrite the middle term and factor by grouping! Furthermore, practice makes perfect! Common mistakes include rushing into factoring without checking if the quadratic can be simplified first, like factoring out a common factor. Remember to always look for that before diving into the more complex breakdown!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad