Responder
Here are the factorizations of the given quadratic expressions:
1. \( 2x^{2} - 7x - 72 = (2x + 9)(x - 8) \)
2. \( 2x^{2} - 5x - 12 = (2x + 3)(x - 4) \)
3. \( 3x^{2} - 13x - 10 = (3x + 2)(x - 5) \)
4. \( 2x^{2} - 9x + 9 = (2x - 3)(x - 3) \)
5. \( 3x^{2} + 20x + 12 = (3x + 2)(x + 6) \)
6. \( 2x^{2} + 7x - 15 = (2x - 3)(x + 5) \)
7. \( 3x^{2} - 4x - 15 = (3x + 5)(x - 3) \)
8. \( 7x^{2} - 10x - 8 = (7x + 4)(x - 2) \)
9. \( 11x^{2} - 25x + 6 = (11x - 2)(x - 3) \)
10. \( 15x^{2} - 7x - 2 = (5x + 1)(3x - 2) \)
Solución
Sure! Let's factorize each of the given quadratic expressions completely.
### 1. \( 2x^{2} - 7x - 72 \)
**Factorization:**
\[
2x^{2} - 7x - 72 = (2x + 9)(x - 8)
\]
### 2. \( 2x^{2} - 5x - 12 \)
**Factorization:**
\[
2x^{2} - 5x - 12 = (2x + 3)(x - 4)
\]
### 3. \( 3x^{2} - 13x - 10 \)
**Factorization:**
\[
3x^{2} - 13x - 10 = (3x + 2)(x - 5)
\]
### 4. \( 2x^{2} - 9x + 9 \)
**Factorization:**
\[
2x^{2} - 9x + 9 = (2x - 3)(x - 3)
\]
### 5. \( 3x^{2} + 20x + 12 \)
**Factorization:**
\[
3x^{2} + 20x + 12 = (3x + 2)(x + 6)
\]
### 6. \( 2x^{2} + 7x - 15 \)
**Factorization:**
\[
2x^{2} + 7x - 15 = (2x - 3)(x + 5)
\]
### 7. \( 3x^{2} - 4x - 15 \)
**Factorization:**
\[
3x^{2} - 4x - 15 = (3x + 5)(x - 3)
\]
### 8. \( 7x^{2} - 10x - 8 \)
**Factorization:**
\[
7x^{2} - 10x - 8 = (7x + 4)(x - 2)
\]
### 9. \( 11x^{2} - 25x + 6 \)
**Factorization:**
\[
11x^{2} - 25x + 6 = (11x - 2)(x - 3)
\]
### 10. \( 15x^{2} - 7x - 2 \)
**Factorization:**
\[
15x^{2} - 7x - 2 = (5x + 1)(3x - 2)
\]
---
### **Methodology for Factorization**
For each quadratic expression of the form \( ax^{2} + bx + c \), follow these steps:
1. **Multiply \( a \) and \( c \):** Compute \( ac \).
2. **Find Two Numbers:** Identify two numbers \( m \) and \( n \) such that:
- \( m \times n = ac \)
- \( m + n = b \)
3. **Rewrite the Middle Term:** Express \( bx \) as \( mx + nx \).
4. **Factor by Grouping:** Group the terms and factor out the common factors.
5. **Write the Final Factors:** Combine the grouped factors to get the final factored form.
**Example:**
Let's take the first quadratic expression as an example.
**Given:**
\[
2x^{2} - 7x - 72
\]
1. **Multiply \( a \) and \( c \):**
\[
2 \times (-72) = -144
\]
2. **Find Two Numbers:** We need two numbers that multiply to \(-144\) and add up to \(-7\). These numbers are \( 9 \) and \(-16\) because:
\[
9 \times (-16) = -144 \quad \text{and} \quad 9 + (-16) = -7
\]
3. **Rewrite the Middle Term:**
\[
2x^{2} + 9x - 16x - 72
\]
4. **Factor by Grouping:**
\[
(2x^{2} + 9x) + (-16x - 72) = x(2x + 9) - 8(2x + 9)
\]
5. **Write the Final Factors:**
\[
(2x + 9)(x - 8)
\]
Repeat these steps for each quadratic expression to achieve complete factorization.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución