Pregunta
hich value for \( s \) will make this equation true? \[ s(11-s)=24 \]
Ask by Cross Chen. in the United States
Jan 30,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The values of \( s \) that satisfy the equation are **3** and **8**.
Solución
To find the value(s) of \( s \) that satisfy the equation:
\[
s(11 - s) = 24
\]
follow these steps:
1. **Expand the Equation:**
\[
11s - s^2 = 24
\]
2. **Rearrange the Equation to Standard Quadratic Form:**
\[
-s^2 + 11s - 24 = 0
\]
Multiply both sides by \(-1\) to make the quadratic coefficient positive:
\[
s^2 - 11s + 24 = 0
\]
3. **Factor the Quadratic Equation:**
We need to find two numbers that multiply to \( 24 \) (the constant term) and add up to \( -11 \) (the coefficient of \( s \)).
The numbers \( -3 \) and \( -8 \) satisfy these conditions because:
\[
(-3) \times (-8) = 24 \quad \text{and} \quad (-3) + (-8) = -11
\]
So, the factored form is:
\[
(s - 3)(s - 8) = 0
\]
4. **Solve for \( s \):**
Set each factor equal to zero:
\[
s - 3 = 0 \quad \Rightarrow \quad s = 3
\]
\[
s - 8 = 0 \quad \Rightarrow \quad s = 8
\]
5. **Conclusion:**
The values of \( s \) that make the equation true are **3** and **8**.
**Verification:**
- For \( s = 3 \):
\[
3(11 - 3) = 3 \times 8 = 24 \quad \text{✓}
\]
- For \( s = 8 \):
\[
8(11 - 8) = 8 \times 3 = 24 \quad \text{✓}
\]
Both solutions satisfy the original equation.
**Answer:**
Both \( s = 3 \) and \( s = 8 \) satisfy the equation \( s(11 - s) = 24 \).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To solve the equation \( s(11-s) = 24 \), we first expand it to form a quadratic equation: \[ 11s - s^2 = 24 \] Rearranging gives: \[ s^2 - 11s + 24 = 0 \] Now, we can factor this quadratic: \[ (s - 3)(s - 8) = 0 \] Setting each factor equal to zero gives us the possible solutions: \[ s - 3 = 0 \quad \Rightarrow \quad s = 3 \] \[ s - 8 = 0 \quad \Rightarrow \quad s = 8 \] Thus, the values for \( s \) that satisfy the equation \( s(11-s) = 24 \) are \( s = 3 \) and \( s = 8 \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium