Pregunta

Use integration by parts to evaluate the integral \( \int x e^{x} \, dx \).

Ask by Bond Park. in the United States
Nov 21,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The integral \( \int x e^{x} \, dx \) evaluates to \( e^x (x - 1) + C \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

The Deep Dive

To evaluate the integral \( \int x e^{x} \, dx \) using integration by parts, we start by identifying our \( u \) and \( dv \). Let's set: - \( u = x \) (which means \( du = dx \)) - \( dv = e^{x} \, dx \) (which means \( v = e^{x} \)) Now, applying the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] we get: \[ \int x e^{x} \, dx = x e^{x} - \int e^{x} \, dx \] Now, calculate the integral \( \int e^{x} \, dx \): \[ \int e^{x} \, dx = e^{x} + C \] Substituting this back into our equation: \[ \int x e^{x} \, dx = x e^{x} - e^{x} + C \] We can simplify this to: \[ \int x e^{x} \, dx = e^{x}(x - 1) + C \] And that's our result!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad