Use integration by parts to evaluate the integral \( \int x e^{x} \, dx \).
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To evaluate the integral \( \int x e^{x} \, dx \) using integration by parts, we start by identifying our \( u \) and \( dv \). Let's set: - \( u = x \) (which means \( du = dx \)) - \( dv = e^{x} \, dx \) (which means \( v = e^{x} \)) Now, applying the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] we get: \[ \int x e^{x} \, dx = x e^{x} - \int e^{x} \, dx \] Now, calculate the integral \( \int e^{x} \, dx \): \[ \int e^{x} \, dx = e^{x} + C \] Substituting this back into our equation: \[ \int x e^{x} \, dx = x e^{x} - e^{x} + C \] We can simplify this to: \[ \int x e^{x} \, dx = e^{x}(x - 1) + C \] And that's our result!
preguntas relacionadas
