Pregunta
Question 3 Score: 0 of 1 point Given two independent events \( A \) and \( B \) with probabilities 0.694 and 0.148 respectively, what is the probability that both events occur? A 0.1027 B 0.0924 C 0.1232 D 0.113 E 0.0822
Ask by Gough Wells. in the United States
Feb 18,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The probability that both events occur is approximately 0.1027, which is option A.
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Beyond the Answer
To find the probability that both independent events \( A \) and \( B \) occur, you simply multiply their probabilities together. So, if \( P(A) = 0.694 \) and \( P(B) = 0.148 \), the calculation would be: \[ P(A \text{ and } B) = P(A) \times P(B) = 0.694 \times 0.148 \] Calculating that gives: \[ 0.694 \times 0.148 = 0.102592 \] Rounding this, we see that the closest answer is: **A 0.1027**.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium