Pregunta
upstudy study bank question image url

Current learning objective: The Addition Rule Question 4 Score: 0 of 1 point In a box of assorted cookies, \( 39 \% \) contain chocolate and \( 14 \% \) contain nuts, In the box, \( 6 \% \) contain both chocolate and nuts, Sean is allergic to both chocolate and nuts. Find the probability that a cookie contains chocolate or nuts (he can't eat it). Enter your answer Find the probability that a cookie does not contain chocolate or nuts (he can eat it). Enter your answer

Ask by Beck Donnelly. in the United States
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- Probability a cookie contains chocolate or nuts: 47% - Probability a cookie does not contain chocolate or nuts: 53%

Solución

Given that 39% of the cookies contain chocolate, 14% contain nuts, and 6% contain both, we use the addition rule for probabilities:  Probability(cookie has chocolate or nuts) = P(chocolate) + P(nuts) − P(both)   = 0.39 + 0.14 − 0.06   = 0.47 Thus, 47% of the cookies contain chocolate or nuts (Sean can't eat these). The probability that a cookie does not contain chocolate or nuts is the complement:  Probability(cookie is safe) = 1 − 0.47 = 0.53 So, Sean can eat 53% of the cookies. Final Answers: – Probability cookie contains chocolate or nuts: 0.47 – Probability cookie does not contain chocolate or nuts: 0.53

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the probability that a cookie contains chocolate or nuts, we can use the Addition Rule for probabilities. The formula is: \[ P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) \] In this case: - \( P(\text{chocolate}) = 39\% = 0.39 \) - \( P(\text{nuts}) = 14\% = 0.14 \) - \( P(\text{chocolate and nuts}) = 6\% = 0.06 \) So, \[ P(\text{chocolate or nuts}) = 0.39 + 0.14 - 0.06 = 0.47 \] This means there’s a \( 47\% \) chance that a cookie contains chocolate or nuts, making it unsafe for Sean to eat. To find the probability that a cookie does not contain chocolate or nuts, we subtract the probability of chocolate or nuts from 1: \[ P(\text{not (chocolate or nuts)}) = 1 - P(\text{chocolate or nuts}) = 1 - 0.47 = 0.53 \] Thus, there's a \( 53\% \) chance that a cookie does not contain chocolate or nuts, meaning it's safe for Sean to eat! In conclusion: 1. \( P(\text{chocolate or nuts}) = 0.47 \) 2. \( P(\text{not (chocolate or nuts)}) = 0.53 \)

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad