2. A sequence \( b_{1}, b_{2}, b_{3}, \cdots \) is given by the recurrence relation \[ b_{n+1}=5 b_{n}-3 \text {, } \quad b_{1}=k \] where \( k \) is a non zero constant. a) Find the value of \( b_{4} \) in terms of \( k \). b) Given that \( b_{4}=7 \), determine the value of \( k \).
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To find the values asked, let's break it down step by step. a) We start with the recurrence relation \( b_{n+1} = 5b_n - 3 \) and the initial condition \( b_1 = k \). Calculating subsequent terms: - \( b_2 = 5b_1 - 3 = 5k - 3 \) - \( b_3 = 5b_2 - 3 = 5(5k - 3) - 3 = 25k - 15 - 3 = 25k - 18 \) - \( b_4 = 5b_3 - 3 = 5(25k - 18) - 3 = 125k - 90 - 3 = 125k - 93 \) Thus, we can conclude that \( b_4 = 125k - 93 \). b) We are given that \( b_4 = 7 \). Setting our expression equal to 7: \[ 125k - 93 = 7 \] Solving for \( k \): \[ 125k = 7 + 93 = 100 \] \[ k = \frac{100}{125} = \frac{4}{5} \] Thus, the value of \( k \) is \( \frac{4}{5} \). In summary: - \( b_4 = 125k - 93 \) - \( k = \frac{4}{5} \) when \( b_4 = 7 \).
