8. Gas is pumped into a spherical balloon at \( 500 \mathrm{~cm}^{3} / \mathrm{s} \). Find the rate of increase in surface area when the radius is 15 cm . The side of an equilateral triangle is increasing at \( \frac{2}{\sqrt{0}} \mathrm{~cm} / \mathrm{s} \). Calculate the rate of ch
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find the rate of increase in surface area of the balloon when the radius is 15 cm, we first recognize that the volume \( V \) of a sphere is given by \( V = \frac{4}{3} \pi r^3 \). The rate of volume change \( \frac{dV}{dt} = 500 \, \mathrm{cm}^3/\mathrm{s} \) leads us to use related rates. We differentiate \( V \) with respect to \( t \), yielding \( \frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt} \). Plugging in \( r = 15 \) cm, we can solve for \( \frac{dr}{dt} \) and subsequently find the surface area \( S = 4\pi r^2 \); thus, we can find \( \frac{dS}{dt} \). Now for the equilateral triangle, the relationship between the side length \( s \) and the area \( A \) is \( A = \frac{\sqrt{3}}{4} s^2 \). Differentiating with respect to time \( t \), we get \( \frac{dA}{dt} = \frac{\sqrt{3}}{2} s \frac{ds}{dt} \). With \( \frac{ds}{dt} = \frac{2}{\sqrt{0}} \) cm/s (that's an exhilaratingly odd rate), we need to keep in mind that as \( s \) increases, it should still be defined (so let’s pretend \( s > 0 \)). We can substitute to find the rate of change of the area.
