11. The function \( f \) and \( g \) are defined by \[ f(x)=\cos x, \quad 0 \leq x \leq \pi \quad \text { and } \quad g(x)=1-x^{2}, \quad x \in \mathbb{R} \] (a) Solve the equation \( f \circ g(x)=\frac{1}{2} \). (b) Determine the values of \( x \) for which \( f^{-1} \circ g(x) \) is not defined.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To solve the equation \( f \circ g(x) = \frac{1}{2} \), we first express it in terms of the definitions of \( f \) and \( g \): 1. **Step 1:** Substitute \( g(x) \) into \( f(x) \): \[ f \circ g(x) = f(g(x)) = f(1 - x^2) = \cos(1 - x^2) \] 2. **Step 2:** Set the equation: \[ \cos(1 - x^2) = \frac{1}{2} \] 3. **Step 3:** We know that \( \cos(\theta) = \frac{1}{2} \) when \( \theta = \frac{\pi}{3} + 2k\pi \) or \( \theta = \frac{5\pi}{3} + 2k\pi \) for any integer \( k \). Therefore, we have: \[ 1 - x^2 = \frac{\pi}{3} + 2k\pi \quad \text{or} \quad 1 - x^2 = \frac{5\pi}{3} + 2k\pi \] 4. **Step 4:** For each case, solve for \( x \): - For \( 1 - x^2 = \frac{\pi}{3} + 2k\pi \): \[ x^2 = 1 - \frac{\pi}{3} - 2k\pi \] \[ x = \pm \sqrt{1 - \frac{\pi}{3} - 2k\pi} \] - For \( 1 - x^2 = \frac{5\pi}{3} + 2k\pi \): \[ x^2 = 1 - \frac{5\pi}{3} - 2k\pi \] \[ x = \pm \sqrt{1 - \frac{5\pi}{3} - 2k\pi} \] Now, we need to find permissible values of \( k \) such that \( x^2 \geq 0 \) leads to valid \( x \) values. --- **(b)** To determine where \( f^{-1} \circ g(x) \) is not defined, we need to understand the range of \( g(x) \) and the requirement for \( f^{-1} \). 1. **Step 1:** Analyze \( g(x) = 1 - x^2 \): - The maximum value occurs at \( x = 0 \), yielding \( g(0) = 1 \). - As \( |x| \to \infty \), \( g(x) \to -\infty \). - Therefore, the range of \( g(x) \) is \( (-\infty, 1] \). 2. **Step 2:** Find the range of \( f(x) = \cos(x) \) for \( 0 \leq x \leq \pi \): - The range is \( [-1, 1] \). - The inverse function \( f^{-1}(y) \) is defined for \( y \in [-1, 1] \). 3. **Step 3:** Identify where \( f^{-1} \) becomes undefined: - Since \( g(x) \) produces values in \( (-\infty, 1] \), any \( g(x) < -1 \) will make \( f^{-1} \) undefined. - Solve \( 1 - x^2 < -1 \): \[ 1 < x^2 \] \[ |x| > 1 \] Thus, \( f^{-1} \circ g(x) \) is not defined for \( x < -1 \) or \( x > 1 \).
preguntas relacionadas
