Pregunta
upstudy study bank question image url

11. Explain how to use implicit differentiation to find \( \frac{d y}{d x} \) for each of the following equations. Then find \( \frac{d y}{d x} \). (a) \( \quad-5 x^{4}-2 e^{y}=-5 y^{3}-7 \)

Ask by Morrison Moran. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To find \( \frac{d y}{d x} \) for the equation \( -5x^{4} - 2e^{y} = -5y^{3} - 7 \), use implicit differentiation as follows: 1. Differentiate both sides with respect to x: - \( \frac{d}{dx}(-5x^{4}) = -20x^{3} \) - \( \frac{d}{dx}(-2e^{y}) = -2e^{y} \cdot \frac{dy}{dx} \) - \( \frac{d}{dx}(-5y^{3}) = -15y^{2} \cdot \frac{dy}{dx} \) - \( \frac{d}{dx}(-7) = 0 \) 2. Set up the differentiated equation: \[ -20x^{3} - 2e^{y} \cdot \frac{dy}{dx} = -15y^{2} \cdot \frac{dy}{dx} \] 3. Solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{-20x^{3}}{2e^{y} - 15y^{2}} \] So, \( \frac{dy}{dx} = \frac{-20x^{3}}{2e^{y} - 15y^{2}} \).

Solución

We start with the equation   -5x⁴ - 2eʸ = -5y³ - 7. To find dy/dx using implicit differentiation, differentiate both sides with respect to x, remembering that y is a function of x and using the chain rule when differentiating terms involving y. Step 1. Differentiate each term with respect to x. • For the term -5x⁴:   d/dx (-5x⁴) = -20x³. • For the term -2eʸ:   d/dx (-2eʸ) = -2 · eʸ · (dy/dx)         (since d/dx (eʸ) = eʸ · (dy/dx)). • For the term -5y³:   d/dx (-5y³) = -5 · 3y² · (dy/dx) = -15y² · (dy/dx). • For the constant -7:   d/dx (-7) = 0. Step 2. Write the differentiated equation:   -20x³ - 2eʸ · (dy/dx) = -15y² · (dy/dx) + 0. Step 3. Solve for dy/dx. First, bring the terms involving dy/dx to one side of the equation:   -20x³ = -15y² · (dy/dx) + 2eʸ · (dy/dx). Factor out dy/dx on the right side:   -20x³ = (2eʸ - 15y²) · (dy/dx). Now, solve for dy/dx by dividing both sides by (2eʸ - 15y²):   dy/dx = (-20x³) / (2eʸ - 15y²). Thus, the derivative of y with respect to x is   dy/dx = (-20x³) / (2eʸ - 15y²).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To use implicit differentiation, start by differentiating both sides of the equation with respect to \( x \). When you differentiate terms involving \( y \), remember to multiply by \( \frac{d y}{d x} \) because \( y \) is a function of \( x \). For the equation \( -5 x^4 - 2 e^y = -5 y^3 - 7 \), differentiate each term: the left-hand side becomes \( -20 x^3 - 2 e^y \frac{d y}{d x} \), and the right-hand side becomes \( -15 y^2 \frac{d y}{d x} \). Setting both differentiated sides equal gives you \( -20 x^3 - 2 e^y \frac{d y}{d x} = -15 y^2 \frac{d y}{d x} \). Now, collect all \( \frac{d y}{d x} \) terms on one side: \( -2 e^y \frac{d y}{d x} + 15 y^2 \frac{d y}{d x} = 20 x^3 \). Factor out \( \frac{d y}{d x} \) to solve for it: \( \frac{d y}{d x} = \frac{20 x^3}{15y^2 + 2 e^y} \). Voilà! You have found \( \frac{d y}{d x} \)! For some extra fun, did you know that implicit differentiation is used in various fields like physics and economics? Whether you're analyzing the trajectory of an object or determining the relationship between quantities in supply and demand curves, it's an essential tool that can simplify complex relationships without explicitly solving for \( y \). Additionally, a common mistake in implicit differentiation is neglecting to apply the chain rule correctly. When differentiating terms, particularly those involving \( y \), be sure to remember to multiply by \( \frac{d y}{d x} \) to capture the underlying relationship between \( x \) and \( y \). Forgetting this step can lead to incorrect derivatives!

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad