26. Given that \( y=e^{m \tan ^{-1} x^{2}} \), show that \( \left(1+x^{4}\right) \frac{d y}{d x}=2 m x y \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To show that \((1 + x^4) \frac{dy}{dx} = 2mxy\) for \(y = e^{m \tan^{-1}(x^2)}\), we start by differentiating \(y\) with respect to \(x\). 1. First, we find \(\frac{dy}{dx}\). Using the chain rule: \[ \frac{dy}{dx} = e^{m \tan^{-1}(x^2)} \cdot \frac{d}{dx}(m \tan^{-1}(x^2)). \] Applying the differentiation to \(\tan^{-1}(x^2)\): \[ \frac{d}{dx}(\tan^{-1}(x^2)) = \frac{2x}{1 + (x^2)^2} = \frac{2x}{1 + x^4}. \] So, \[ \frac{dy}{dx} = e^{m \tan^{-1}(x^2)} \cdot m \cdot \frac{2x}{1 + x^4}. \] Therefore, \[ \frac{dy}{dx} = m \cdot e^{m \tan^{-1}(x^2)} \cdot \frac{2x}{1 + x^4} = 2mx \frac{y}{1 + x^4}. \] 2. Now, multiply both sides by \((1+x^4)\): \[ (1+x^4) \frac{dy}{dx} = 2mx y. \] This verifies the given equation: \[ (1 + x^4) \frac{dy}{dx} = 2mxy. \] Hence, the required result is shown successfully!
preguntas relacionadas
