Pregunta
8. Multiple Cholce 1 point Determine if L'Hopital's Rule can be used. If it can, solve the limit. If it cannot choose the appropriate response. \( \lim _{x \rightarrow 1} \frac{\ln x}{x-1} \) L'Hopital's Rule does not apply. (1) Previous
Ask by Mejia Colon. in the United States
Feb 26,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
L'Hôpital's Rule can be used. The limit is 1.
Solución
We first check if the limit is in an indeterminate form. As x approaches 1, the numerator ln(x) tends to ln(1) = 0 and the denominator x - 1 tends to 0. Since both numerator and denominator approach 0, we have a 0/0 indeterminate form, meaning L'Hôpital's Rule can be used.
Applying L'Hôpital's Rule, we differentiate the numerator and denominator:
• Derivative of ln(x) is 1/x.
• Derivative of (x - 1) is 1.
So, the limit becomes:
limₓ→₁ (1/x) = 1/1 = 1
Thus, the limit is 1.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Extra Insights
L'Hôpital's Rule is perfect for situations where we encounter indeterminate forms like \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \). In this case, as \( x \) approaches 1, both \( \ln x \) and \( x - 1 \) approach 0, making it a \( \frac{0}{0} \) form. So, we can apply L'Hôpital's Rule! When we differentiate the numerator and denominator, we get \( \frac{\frac{1}{x}}{1} \). Now substituting \( x = 1 \) gives us \( \frac{1}{1} = 1 \). Voilà! The limit is 1.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium