\( ( \frac { 0 } { 1 ! } + \frac { 1 } { 2 ! } + \frac { 2 } { 3 ! } + \frac { 3 } { 4 ! } + \ldots + \frac { 6 } { 7 ! } ) + \frac { 6 ! } { 2 } \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To evaluate the expression \( ( \frac { 0 } { 1 ! } + \frac { 1 } { 2 ! } + \frac { 2 } { 3 ! } + \frac { 3 } { 4 ! } + \ldots + \frac { 6 } { 7 ! } ) + \frac { 6 ! } { 2 } \), we first look at the sum: \[ S = \frac{0}{1!} + \frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \frac{4}{5!} + \frac{5}{6!} + \frac{6}{7!} \] Notice a pattern in the terms: \(\frac{n}{(n+1)!} = \frac{1}{n!} - \frac{1}{(n+1)!}\). Thus, we can rewrite the sum as a telescoping series: \[ S = \left( \frac{1}{1!} - \frac{1}{2!} \right) + \left( \frac{1}{2!} - \frac{1}{3!} \right) + \left( \frac{1}{3!} - \frac{1}{4!} \right) + \left( \frac{1}{4!} - \frac{1}{5!} \right) + \left( \frac{1}{5!} - \frac{1}{6!} \right) + \left( \frac{1}{6!} - \frac{1}{7!} \right) \] Most terms will cancel out: \[ S = \frac{1}{1!} - \frac{1}{7!} \] Calculating the values, we have: \[ S = 1 - \frac{1}{5040} = \frac{5040 - 1}{5040} = \frac{5039}{5040} \] Next, we calculate \(\frac{6!}{2}\): \[ \frac{6!}{2} = \frac{720}{2} = 360 \] Now, adding both results together: \[ \frac{5039}{5040} + 360 \] To combine these, convert \(360\) into a fraction with a denominator of \(5040\): \[ 360 = \frac{360 \times 5040}{5040} = \frac{1814400}{5040} \] Then add the fractions: \[ \frac{5039}{5040} + \frac{1814400}{5040} = \frac{1819439}{5040} \] So the final answer is: \[ \frac{1819439}{5040} \]
