3.2 Simplify \( 3.21 \frac{\operatorname{Sin} 550}{\operatorname{Cos}(-170)} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
Did you know that the sine and cosine functions have fascinating properties? For instance, \(\sin(550^\circ)\) can be simplified by utilizing the periodicity of the sine function, which is \(360^\circ\). So, \(550^\circ - 360^\circ = 190^\circ\), meaning \(\sin(550^\circ) = \sin(190^\circ)\)! Also, remember that \(\cos(-\theta) = \cos(\theta)\!). Therefore, \(\cos(-170^\circ) = \cos(170^\circ)\). When simplifying, it's essential to utilize these helpful trigonometric identities to make your calculations easier and more efficient!
