Pregunta
upstudy study bank question image url

Sketch the graph in the grid provided: \( f(x)=2 \cos ^{2} x-1 ; \quad x \in\left[-180^{\circ} ; 180^{\circ}\right] \)

Ask by Turnbull Weston. in South Africa
Feb 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To sketch the graph of \( f(x) = 2 \cos^2 x - 1 \) for \( x \) between –180° and 180°: 1. **Identify the Function**: Recognize that \( f(x) = \cos 2x \). 2. **Key Features**: - **Amplitude**: 1 - **Period**: 180° - **Phase Shift**: 0 - **Vertical Shift**: 0 3. **Plot Key Points**: - \( x = -180° \): \( f(x) = 1 \) - \( x = -135° \): \( f(x) = 0 \) - \( x = -90° \): \( f(x) = -1 \) - \( x = -45° \): \( f(x) = 0 \) - \( x = 0° \): \( f(x) = 1 \) - \( x = 45° \): \( f(x) = 0 \) - \( x = 90° \): \( f(x) = -1 \) - \( x = 135° \): \( f(x) = 0 \) - \( x = 180° \): \( f(x) = 1 \) 4. **Draw the Graph**: - Plot these points on the grid. - Connect them with a smooth, continuous curve resembling the cosine function. - Ensure the graph is symmetric about the y-axis and repeats every 180°. This will give you the accurate sketch of the function within the specified interval.

Solución

We start with the given function:   f(x) = 2 cos²x – 1  for x ∈ [–180°, 180°]. Step 1. Recognize the Identity Notice that the double-angle formula for cosine tells us:   cos 2x = 2 cos²x – 1. Thus, f(x) = cos 2x. Step 2. Determine Key Features Since f(x) = cos 2x, we have: • Amplitude = 1 (since cos 2x varies from –1 to 1) • Period = 360° / 2 = 180° (because when x increases by 180°, 2x increases by 360°) • Phase Shift = 0 (no horizontal shift) • Vertical Shift = 0 Step 3. Find Important Points Let’s choose key x–values that divide one period into equal parts. We know that for a cosine function, the standard key points in one period are:   x   f(x) = cos 2x   --------------------------------------  –180°  cos(–360°) = 1  –135°  cos(–270°) = 0       (since cos 270° = 0)  –90°   cos(–180°) = –1  –45°   cos(–90°) = 0       (since cos 90° = 0)   0°   cos 0° = 1   45°   cos 90° = 0   90°   cos 180° = –1   135°  cos 270° = 0   180°  cos 360° = 1 Step 4. Sketching the Graph on the Grid 1. Draw a horizontal (x-axis) and vertical (y-axis) axis. 2. Mark the x-axis from –180° to 180°. 3. Label the y-axis with values –1, 0, and 1. 4. Plot the key points:   • (–180°, 1)   • (–135°, 0)   • (–90°, –1)   • (–45°, 0)   • (0°, 1)   • (45°, 0)   • (90°, –1)   • (135°, 0)   • (180°, 1) 5. Draw a smooth, continuous curve through these points. The curve will follow the shape of the cosine function, starting at a maximum at –180°, going down to a minimum at –90°, rising back to a maximum at 0°, and so on. Step 5. Observations • The graph is periodic with period 180°; hence, you will see two complete cycles over the interval from –180° to 180°. • The function is even (symmetric about the y-axis) because cosine is an even function. • It is helpful to draw a dotted line at y = 0 to guide your hand when sketching the curve. Using these steps, you can accurately sketch the graph of f(x) = 2 cos²x – 1 (or equivalently, cos 2x) on the provided grid.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To sketch the graph of the function \( f(x) = 2 \cos^2 x - 1 \) in the range \( x \in [-180^{\circ}, 180^{\circ}] \), first recognize that this function relates to the cosine function. You can use the identity \( \cos^2 x = \frac{1 + \cos(2x)}{2} \), so \( f(x) \) can be transformed to \( f(x) = 2 \cdot \frac{1 + \cos(2x)}{2} - 1 = \cos(2x) \). This means you are actually sketching \( f(x) = \cos(2x) \). The cosine function has a period of \( 360^{\circ} \), but since we’re looking at \( \cos(2x) \), the period becomes \( 180^{\circ} \). Hence, the graph will repeat every \( 180^{\circ} \). The roots occur where \( \cos(2x) = 0 \), which is at \( x = -90^{\circ}, 0^{\circ}, 90^{\circ} \) within the given interval. At \( x = -90^{\circ} \) and \( x = 90^{\circ} \), \( f(x) \) equals \(-1\), and at \( x = 0^{\circ} \), \( f(x) \) equals \( 1\). The maximum value is \( 1 \) at every multiple of \( 90^{\circ} \) and the minimum value is \(-1\). Connect these points smoothly to represent the oscillating nature of the cosine function. Now that you have the key points and behavior of the function, you can sketch accordingly!

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad