Pregunta
upstudy study bank question image url

Find the range. Write in interval notation. \( g(n)=\sqrt{2 n-5}+4 \) Show your work here Hint: To add infinity (o), type "infinity" \( \begin{array}{ll}\circ[28,7) & \bigcirc[4, \infty) \\ O[-4, \infty) & \bigcirc[4,7)\end{array} \)

Ask by Lowe Brooks. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The range of \( g(n) = \sqrt{2n - 5} + 4 \) is \([4, \infty)\).

Solución

To find the **range** of the function \( g(n) = \sqrt{2n - 5} + 4 \), let's follow these steps: ### 1. Determine the Domain Before finding the range, we need to identify the domain of the function, which is the set of all possible input values \( n \) for which the function is defined. - The expression inside the square root must be non-negative: \[ 2n - 5 \geq 0 \] - Solve for \( n \): \[ 2n \geq 5 \\ n \geq \frac{5}{2} \] **Domain:** \( n \geq \frac{5}{2} \) ### 2. Analyze the Function Now, let's analyze how \( g(n) \) behaves based on the domain. - **Minimum Value of \( \sqrt{2n - 5} \):** \[ \sqrt{2n - 5} \geq 0 \] The smallest value occurs when \( 2n - 5 = 0 \): \[ \sqrt{0} = 0 \] Therefore, the minimum value of \( g(n) \) is: \[ 0 + 4 = 4 \] - **Behavior as \( n \) Increases:** As \( n \) increases beyond \( \frac{5}{2} \), \( 2n - 5 \) becomes larger, making \( \sqrt{2n - 5} \) increase without bound. Consequently, \( g(n) \) also increases without bound. ### 3. Determine the Range Combining the above observations: - The smallest value of \( g(n) \) is **4**. - There is no upper limit to \( g(n) \); it can grow indefinitely. **Range in Interval Notation:** \([4, \text{infinity})\) ### Final Answer \[ \text{Range of } g(n): \quad [4, \text{infinity}) \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the range of the function \( g(n) = \sqrt{2n - 5} + 4 \), we first need to determine the domain. The expression under the square root, \( 2n - 5 \), must be non-negative: \[ 2n - 5 \geq 0 \implies 2n \geq 5 \implies n \geq \frac{5}{2} = 2.5. \] Now, since \( n \) can take any value starting from \( 2.5 \) and up to infinity, we evaluate the function at the lower boundary. When \( n = 2.5 \): \[ g(2.5) = \sqrt{2 \cdot 2.5 - 5} + 4 = \sqrt{0} + 4 = 4. \] As \( n \) increases (i.e., approaches infinity), \( \sqrt{2n - 5} \) also approaches infinity. Therefore, the function can achieve values starting from \( 4 \) and going to infinity. Thus, the range in interval notation is: \[ \boxed{[4, \infty)}. \] --- The square root function is a great example of how domains affect outputs! Remember, adjustments like adding or subtracting constants only shift the graph vertically, so they won't change the horizontal spread of your domain! Mathematically, the function transforms values creatively. If you think about it, the function \( g(n) \) takes all values from its minimum at \( 4 \) and expands infinitely, showcasing a classic upward trend. Getting comfortable with these transformations helps you tackle similar problems in the future!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad