Responder
\( z(t) = \frac{1}{t^2 + 2t} + \frac{1}{t^3 - 3} \)
\[
\frac{dz}{dt} = -\frac{1}{(t^2 + 2t)^2}(2t + 2) - \frac{1}{(t^3 - 3)^2}(3t^2)
\]
Solución
Solve the differential equation by following steps:
- step0: Solve using separation of variable:
\(\frac{dz}{dt}=\frac{\frac{z}{x}\times \frac{x}{t}+\frac{z}{y}\times \frac{y}{t}}{t}\)
- step1: Simplify:
\(\frac{dz}{dt}=\frac{2z}{t^{2}}\)
- step2: Rewrite the expression:
\(\frac{dz}{dt}=\frac{2}{t^{2}}\times z\)
- step3: Rewrite the expression:
\(\frac{1}{z}\times \frac{dz}{dt}=\frac{2}{t^{2}}\times z\times \frac{1}{z}\)
- step4: Multiply the terms:
\(\frac{1}{z}\times \frac{dz}{dt}=\frac{2}{t^{2}}\)
- step5: Transform the expression:
\(\frac{1}{z}\times dz=\frac{2}{t^{2}}\times dt\)
- step6: Integrate both sides of the equation:
\(\int \frac{1}{z} dz=\int \frac{2}{t^{2}} dt\)
- step7: Calculate:
\(\ln{\left(z\right)}+C_{1}=\int \frac{2}{t^{2}} dt,C_{1} \in \mathbb{R}\)
- step8: Calculate:
\(\ln{\left(z\right)}+C_{1}=-\frac{2}{t}+C_{2},C_{1} \in \mathbb{R},C_{2} \in \mathbb{R}\)
- step9: Rewrite the expression:
\(\ln{\left(z\right)}=-\frac{2}{t}+C,C \in \mathbb{R}\)
- step10: Calculate:
\(z=e^{-\frac{2}{t}+C},C \in \mathbb{R}\)
- step11: Rewrite the expression:
\(z=Ce^{-\frac{2}{t}},C \in \mathbb{R}\)
Solve the equation \( \frac{d z}{d t} = \frac{\frac{\text{d} z}{\text{d} x} \frac{\text{d} x}{\text{d} t} + \frac{\text{d} z}{\text{d} y} \frac{\text{d} y}{\text{d} t}}{\text{d} t} \).
Solve the differential equation by following steps:
- step0: Solve using separation of variable:
\(\frac{dz}{dt}=\frac{\frac{z}{x}\times \frac{x}{t}+\frac{z}{y}\times \frac{y}{t}}{t}\)
- step1: Simplify:
\(\frac{dz}{dt}=\frac{2z}{t^{2}}\)
- step2: Rewrite the expression:
\(\frac{dz}{dt}=\frac{2}{t^{2}}\times z\)
- step3: Rewrite the expression:
\(\frac{1}{z}\times \frac{dz}{dt}=\frac{2}{t^{2}}\times z\times \frac{1}{z}\)
- step4: Multiply the terms:
\(\frac{1}{z}\times \frac{dz}{dt}=\frac{2}{t^{2}}\)
- step5: Transform the expression:
\(\frac{1}{z}\times dz=\frac{2}{t^{2}}\times dt\)
- step6: Integrate both sides of the equation:
\(\int \frac{1}{z} dz=\int \frac{2}{t^{2}} dt\)
- step7: Calculate:
\(\ln{\left(z\right)}+C_{1}=\int \frac{2}{t^{2}} dt,C_{1} \in \mathbb{R}\)
- step8: Calculate:
\(\ln{\left(z\right)}+C_{1}=-\frac{2}{t}+C_{2},C_{1} \in \mathbb{R},C_{2} \in \mathbb{R}\)
- step9: Rewrite the expression:
\(\ln{\left(z\right)}=-\frac{2}{t}+C,C \in \mathbb{R}\)
- step10: Calculate:
\(z=e^{-\frac{2}{t}+C},C \in \mathbb{R}\)
- step11: Rewrite the expression:
\(z=Ce^{-\frac{2}{t}},C \in \mathbb{R}\)
Let's solve the problem step by step.
### Part a: Write \( z \) as a function of \( t \) and differentiate.
Given:
\[
z = \frac{1}{x} + \frac{1}{y}, \quad x = t^2 + 2t, \quad y = t^3 - 3
\]
Substituting \( x \) and \( y \) into \( z \):
\[
z(t) = \frac{1}{t^2 + 2t} + \frac{1}{t^3 - 3}
\]
Now, we differentiate \( z(t) \) with respect to \( t \):
\[
\frac{dz}{dt} = -\frac{1}{(t^2 + 2t)^2} \cdot \frac{d}{dt}(t^2 + 2t) - \frac{1}{(t^3 - 3)^2} \cdot \frac{d}{dt}(t^3 - 3)
\]
Calculating the derivatives:
1. For \( x = t^2 + 2t \):
\[
\frac{dx}{dt} = 2t + 2
\]
2. For \( y = t^3 - 3 \):
\[
\frac{dy}{dt} = 3t^2
\]
Substituting these into the derivative of \( z \):
\[
\frac{dz}{dt} = -\frac{1}{(t^2 + 2t)^2}(2t + 2) - \frac{1}{(t^3 - 3)^2}(3t^2)
\]
### Part b: Use the Chain Rule.
Using the Chain Rule:
\[
\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}
\]
We already have:
\[
\frac{\partial z}{\partial x} = -\frac{1}{x^2}, \quad \frac{\partial z}{\partial y} = -\frac{1}{y^2}
\]
Now substituting \( x \) and \( y \):
\[
\frac{\partial z}{\partial x} = -\frac{1}{(t^2 + 2t)^2}, \quad \frac{\partial z}{\partial y} = -\frac{1}{(t^3 - 3)^2}
\]
Thus, we can write:
\[
\frac{dz}{dt} = -\frac{1}{(t^2 + 2t)^2}(2t + 2) - \frac{1}{(t^3 - 3)^2}(3t^2)
\]
### Summary of Results:
- \( z(t) = \frac{1}{t^2 + 2t} + \frac{1}{t^3 - 3} \)
- \( \frac{dz}{dt} = -\frac{1}{(t^2 + 2t)^2}(2t + 2) - \frac{1}{(t^3 - 3)^2}(3t^2) \)
This completes the differentiation of \( z \) with respect to \( t \) using both methods.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución