Pregunta
upstudy study bank question image url

Solve and check the linear equation. \( 28-\frac{x}{2}=\frac{x}{5} \) What is the solution? Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The solution set is \( \} \). B. The solution set is \( \{x \mid x \) is a real number \( \} \). C. The solution set is \( \varnothing \).

Ask by Davison Bowman. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution is \( x = 40 \).

Solución

Solve the equation \( 28-\frac{x}{2}=\frac{x}{5} \). Solve the equation by following steps: - step0: Solve for \(x\): \(28-\frac{x}{2}=\frac{x}{5}\) - step1: Multiply both sides of the equation by LCD: \(\left(28-\frac{x}{2}\right)\times 10=\frac{x}{5}\times 10\) - step2: Simplify the equation: \(280-5x=2x\) - step3: Move the variable to the left side: \(280-5x-2x=0\) - step4: Subtract the terms: \(280-7x=0\) - step5: Move the constant to the right side: \(-7x=0-280\) - step6: Remove 0: \(-7x=-280\) - step7: Change the signs: \(7x=280\) - step8: Divide both sides: \(\frac{7x}{7}=\frac{280}{7}\) - step9: Divide the numbers: \(x=40\) The solution to the linear equation \(28-\frac{x}{2}=\frac{x}{5}\) is \(x=40\). Therefore, the correct choice is: B. The solution set is \( \{x \mid x \) is a real number \( \} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the equation \( 28 - \frac{x}{2} = \frac{x}{5} \), we first eliminate the fractions by multiplying every term by 10 (the least common multiple of 2 and 5): \[ 10 \cdot 28 - 10 \cdot \frac{x}{2} = 10 \cdot \frac{x}{5} \] \[ 280 - 5x = 2x \] Now, let's add \( 5x \) to both sides: \[ 280 = 7x \] Next, divide by 7: \[ x = \frac{280}{7} = 40 \] Checking the solution in the original equation: \[ 28 - \frac{40}{2} = \frac{40}{5} \] \[ 28 - 20 = 8 \] \[ 8 = 8 \] Since both sides are equal, the solution is correct. Therefore, the correct choice is: A. The solution set is \( \{ 40 \} \). Now let's fill you in on some interesting background and applications related to linear equations! Linear equations have been around for centuries, tracing back to ancient civilizations such as the Babylonians who used them for trade and land measurement. The systematic approach to solving such equations was developed further in the 9th century by Persian mathematician Al-Khwarizmi, whose work laid the groundwork for modern algebra. This historical context adds layers to how we appreciate the power of simple equations today! In the real world, linear equations are everywhere! From calculating expenses to predicting profits in businesses, they help us understand relationships between variables. For instance, if you're planning a party and want to figure out how much pizza to order based on the number of guests, you can use a linear equation to calculate the exact amount required. It's a handy tool for daily decision-making!

preguntas relacionadas

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Álgebra Mexico Feb 26, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad