Pregunta
upstudy study bank question image url

The circumference of a circle is 69.08 meters. What is the circle's radius? Use \( \pi \approx 3.14 \) and round your answer to the nearest hundredth. \( \square \) meters Submit

Ask by Burns Evans. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The radius of the circle is approximately 11.00 meters.

Solución

To find the radius of a circle given its circumference, we can use the formula: \[ C = 2\pi r \] where: - \( C \) is the circumference of the circle, - \( \pi \) is a mathematical constant approximately equal to 3.14, - \( r \) is the radius of the circle. Given that the circumference of the circle is 69.08 meters, we can substitute this value into the formula and solve for the radius. \[ 69.08 = 2 \times 3.14 \times r \] Now, we can solve for \( r \) by dividing both sides of the equation by \( 2 \times 3.14 \). \[ r = \frac{69.08}{2 \times 3.14} \] Let's calculate the value of \( r \) and round it to the nearest hundredth. Calculate the value by following steps: - step0: Calculate: \(\frac{69.08}{\left(2\times 3.14\right)}\) - step1: Remove the parentheses: \(\frac{69.08}{2\times 3.14}\) - step2: Multiply the numbers: \(\frac{69.08}{6.28}\) - step3: Convert the expressions: \(\frac{\frac{1727}{25}}{\frac{157}{25}}\) - step4: Multiply by the reciprocal: \(\frac{1727}{25}\times \frac{25}{157}\) - step5: Reduce the numbers: \(11\times 1\) - step6: Simplify: \(11\) The radius of the circle is approximately 11 meters when rounded to the nearest hundredth.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the radius of a circle when you know the circumference, you can use the formula \( C = 2\pi r \). Given that the circumference \( C \) is 69.08 meters, you can rearrange the formula to solve for \( r \): \[ r = \frac{C}{2\pi} \approx \frac{69.08}{2 \times 3.14} \approx \frac{69.08}{6.28} \approx 11.00 \text{ meters.} \] So, the radius of the circle is approximately \( 11.00 \) meters. Understanding circles isn't just about math; they pop up all over history! Think about the ancient Greeks, who studied circles while developing geometry. Figures like Euclid and Archimedes made significant contributions that shaped how we approach not only mathematics, but also engineering and architecture. Circles symbolized harmony and perfection, and they remain integral to scientific concepts and various art forms. If you ever find yourself struggling with how to apply formulas, don’t worry! A common mistake is forgetting to keep the same units when calculating. Always double-check your formulas; using the wrong one can lead you astray. It's also useful to sketch the scenario or write down values to avoid mix-ups. Practice makes perfect—with time, you'll solve these with ease!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad