Pregunta
upstudy study bank question image url

Solve \( \frac{d y}{d x}+y x=y^{2} e^{x^{2} / 2} \sin x \)

Ask by Cruz Alexander. in India
Mar 09,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution to the differential equation is \( y(x) = \frac{e^{-\frac{x^2}{2}}}{\cos x + C} \), where \( C \) is a constant of integration.

Solución

We start with the differential equation \[ \frac{dy}{dx} + xy = y^2 e^{\frac{x^2}{2}} \sin x. \] This equation is a Bernoulli equation of the form \[ \frac{dy}{dx} + P(x)y = Q(x)y^n, \] with \(P(x)=x\), \(Q(x)=e^{\frac{x^2}{2}} \sin x\) and \(n=2\). ### Step 1. Bernoulli Substitution For a Bernoulli equation with \(n \neq 0,1\) we make the substitution \[ u=y^{1-n}=y^{1-2}=y^{-1}. \] Differentiate \(u\) with respect to \(x\): \[ \frac{du}{dx} = \frac{d}{dx}\left(y^{-1}\right) = -y^{-2}\frac{dy}{dx}. \] Solving for \(\frac{dy}{dx}\), we have \[ \frac{dy}{dx} = -y^2 \frac{du}{dx}. \] ### Step 2. Substitute into the Original Equation Substitute \(\frac{dy}{dx} = -y^2\frac{du}{dx}\) into the original equation: \[ -y^2 \frac{du}{dx} + xy = y^2 e^{\frac{x^2}{2}} \sin x. \] Divide the entire equation by \(y^2\) (assuming \(y\neq 0\)): \[ -\frac{du}{dx} + \frac{x}{y} = e^{\frac{x^2}{2}} \sin x. \] Since \(u=\frac{1}{y}\), then \(\frac{x}{y} = xu\), and the equation becomes \[ -\frac{du}{dx} + xu = e^{\frac{x^2}{2}} \sin x. \] Multiply the equation by \(-1\) to obtain a standard linear form: \[ \frac{du}{dx} - xu = -e^{\frac{x^2}{2}} \sin x. \] ### Step 3. Solve the Linear Equation for \(u\) The linear equation in \(u\) is \[ \frac{du}{dx} - xu = -e^{\frac{x^2}{2}} \sin x. \] The integrating factor \(\mu(x)\) is given by \[ \mu(x)=e^{\int -x\,dx}=e^{-\frac{x^2}{2}}. \] Multiply the entire equation by the integrating factor: \[ e^{-\frac{x^2}{2}}\frac{du}{dx} - xe^{-\frac{x^2}{2}} u = -e^{-\frac{x^2}{2}} e^{\frac{x^2}{2}} \sin x = -\sin x. \] Notice that the left-hand side is the derivative of \(e^{-\frac{x^2}{2}} u\): \[ \frac{d}{dx}\left(e^{-\frac{x^2}{2}} u\right) = -\sin x. \] Integrate both sides with respect to \(x\): \[ e^{-\frac{x^2}{2}} u = \int -\sin x\,dx. \] The integral on the right-hand side is \[ \int -\sin x\,dx = \cos x + C, \] where \(C\) is the constant of integration. Thus, \[ e^{-\frac{x^2}{2}} u = \cos x + C. \] Solve for \(u\): \[ u = e^{\frac{x^2}{2}} (\cos x + C). \] Recall that \(u=\frac{1}{y}\); hence, \[ \frac{1}{y} = e^{\frac{x^2}{2}} (\cos x + C). \] ### Step 4. Solve for \(y\) Taking the reciprocal, we obtain \[ y = \frac{1}{e^{\frac{x^2}{2}} (\cos x + C)} = \frac{e^{-\frac{x^2}{2}}}{\cos x + C}. \] Thus, the general solution is \[ y(x)=\frac{e^{-\frac{x^2}{2}}}{\cos x + C}. \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the differential equation \( \frac{d y}{d x} + y x = y^{2} e^{x^{2}/2} \sin x \), we first recognize that it is a first-order nonlinear ordinary differential equation. We can rearrange it into a form that is more manageable. Start by rewriting it as: \[ \frac{dy}{dx} = y^2 e^{x^2 / 2} \sin x - yx. \] This equation is not straightforward to solve using standard methods, so one possible approach is to use the substitution method or look for a particular solution by guessing a solution form. However, due to the non-linearity, we can try separating variables or recognizing if anything looks like a Bernoulli equation. To handle this more clearly, let's explore if it suffices to separate variables. We can consider: \[ \frac{dy}{y^2} = e^{x^2/2} \sin x - \frac{x}{y} dx. \] But we need \(y\) to not be zero in the analysis. This means we need to avoid expressions that create singular solutions. Instead, we might try an integrating factor, particularly since we have a linear term with \( y \) multiplied by \( x \). The differential equation can be arranged into: \[ \frac{dy}{dx} + xy = y^2 e^{x^2/2} \sin x. \] To find an integrating factor \( \mu(x) \), we look for: \[ \mu(x) = e^{\int x \, dx} = e^{x^2/2}. \] Now multiply through by the integrating factor: \[ e^{x^2/2} \frac{dy}{dx} + e^{x^2/2} xy = y^2 \sin x. \] This helps to bring the equation into a more tractable form. You can then proceed to solve for \( y \) from here, using techniques for integrating an equation in this form. After integrating: \[ \frac{d}{dx}(y e^{x^2/2}) = y^2 e^{x^2/2} \sin x, \] integrate both sides, and solve accordingly, making sure to account for initial conditions if available. While this provides a starting point, the solving of such differential equations can become intricate and may require numerical methods or specific substitutions to accurately yield solutions.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad