Find the curvature of the curve \( \vec{r}(t)=\langle 2 \cos (3 t), 2 \sin (3 t), 2 t\rangle \) at the point \( t=0 \) Give your answer to two decimal places
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find the curvature of the curve \(\vec{r}(t)=\langle 2 \cos (3 t), 2 \sin (3 t), 2 t\rangle\) at the point \(t=0\), we can use the formula for the curvature \(\kappa\) given by: \[ \kappa = \frac{\|\vec{r}'(t) \times \vec{r}''(t)\|}{\|\vec{r}'(t)\|^3} \] First, we need to calculate the first and second derivatives of \(\vec{r}(t)\). 1. **First Derivative**: \[ \vec{r}'(t) = \frac{d}{dt}\langle 2 \cos(3t), 2 \sin(3t), 2t \rangle = \langle -6 \sin(3t), 6 \cos(3t), 2 \rangle \] 2. **Second Derivative**: \[ \vec{r}''(t) = \frac{d}{dt}\langle -6 \sin(3t), 6 \cos(3t), 2 \rangle = \langle -18 \cos(3t), -18 \sin(3t), 0 \rangle \] Next, we evaluate these derivatives at \(t=0\): - \(\vec{r}'(0) = \langle -6 \sin(0), 6 \cos(0), 2 \rangle = \langle 0, 6, 2 \rangle\) - \(\vec{r}''(0) = \langle -18 \cos(0), -18 \sin(0), 0 \rangle = \langle -18, 0, 0 \rangle\) Now, we calculate the cross product \(\vec{r}'(0) \times \vec{r}''(0)\): \[ \vec{r}'(0) \times \vec{r}''(0) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 6 & 2 \\ -18 & 0 & 0 \end{vmatrix} = \hat{i}(6 \cdot 0 - 2 \cdot (-18)) - \hat{j}(0 \cdot 0 - 2 \cdot (-18)) + \hat{k}(0 \cdot 0 - 6 \cdot (-18)) \] \[ = \hat{i}(0 + 36) - \hat{j}(0 + 36) + \hat{k}(0 + 108) = \langle 36, -36, 108 \rangle \] Now we calculate the magnitude of the cross product: \[ \|\vec{r}'(0) \times \vec{r}''(0)\| = \sqrt{36^2 + (-36)^2 + 108^2} = \sqrt{1296 + 1296 + 11664} = \sqrt{14256} = 2\sqrt{3564} = 2 \cdot 6\sqrt{99} = 12\sqrt{99} \] Next, we need to compute \(\|\vec{r}'(0)\|\): \[ \|\vec{r}'(0)\| = \sqrt{0^2 + 6^2 + 2^2} = \sqrt{0 + 36 + 4} = \sqrt{40} = 2\sqrt{10} \] Finally, we can substitute these values into the curvature formula: \[ \kappa = \frac{12\sqrt{99}}{(2\sqrt{10})^3} = \frac{12\sqrt{99}}{8\sqrt{1000}} = \frac{12\sqrt{99}}{80\sqrt{10}} = \frac{3\sqrt{99}}{20\sqrt{10}} \] Now approximate this value to two decimal places. We calculate: \[ \sqrt{99} \approx 9.95, \quad \sqrt{10} \approx 3.16 \] Thus: \[ \kappa \approx \frac{3 \cdot 9.95}{20 \cdot 3.16} \approx \frac{29.85}{63.2} \approx 0.472 \] Therefore, the curvature of the curve at the point \(t=
