Pregunta
upstudy study bank question image url

raph the line with the equation \( y=\frac{1}{4} x+7 \)

Ask by Love Cross. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To graph the line \( y = \frac{1}{4}x + 7 \), plot the y-intercept at (0, 7). Then, use the slope of 1/4 to find another point by moving 4 units right and 1 unit up from (0, 7) to (4, 8). Draw a straight line through these points.

Solución

To graph the line given by   y = (1/4)x + 7 follow these steps: 1. Find the y-intercept:   • When x = 0, y = 7. So the line crosses the y-axis at the point (0, 7). 2. Use the slope to find another point:   • The slope is 1/4, which means that for every 4 units you move to the right, the line moves up 1 unit.   • Starting from (0, 7), move 4 units to the right to x = 4 and 1 unit up to y = 8. This gives the point (4, 8). 3. (Optional) Find a second point using the slope:   • You can also move in the opposite direction. For instance, move 4 units to the left (x = -4) and 1 unit down (y = 6) to get the point (-4, 6). 4. Plot the points:   • Mark the points (0, 7), (4, 8), and (-4, 6) on your coordinate plane. 5. Draw the line:   • Use a straightedge to draw a line through these points. Extend the line across the graph. Your line should be a straight line crossing the y-axis at (0, 7) with a gentle upward slope as x increases.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To graph the line represented by the equation \( y=\frac{1}{4} x+7 \), start by identifying key features. The slope \( \frac{1}{4} \) means that for every 4 units you move to the right on the x-axis, you move up 1 unit on the y-axis. The y-intercept is 7, which means the line crosses the y-axis at the point (0, 7). Plot this point and then use the slope to find another point, such as moving right 4 units to x=4, and up 1 unit to y=8, giving you the point (4, 8). Draw the line through these points, and you're good to go! Ready for a fun fact? Did you know that the steepness of a line (its slope) can represent real-world rates? For instance, if this line represented distance over time, a slope of \( \frac{1}{4} \) would mean you are traveling one unit of distance for every four units of time! This can be incredibly useful for budgeting travel plans or analyzing speed in various contexts. Now, if you're eager to delve into similar topics, consider studying the concept of parallel and perpendicular lines! Parallel lines have the same slope, while the slopes of perpendicular lines are negative reciprocals of each other (the product of their slopes equals -1). Exploring these relationships can expand your understanding of graphing in two-dimensional space!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad