b) \( \int \frac{\sqrt{x}-1}{1+\sqrt{x}} \quad, t=\sqrt{x} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To solve the integral \( \int \frac{\sqrt{x}-1}{1+\sqrt{x}} \, dx \) using the substitution \( t = \sqrt{x} \), first, we have \( x = t^2 \) and \( dx = 2t \, dt \). Substitute these into the integral: \[ \int \frac{t-1}{1+t} \cdot 2t \, dt = 2 \int \frac{t(t-1)}{1+t} \, dt \] Now simplify the integrand: \[ \frac{t(t-1)}{1+t} = \frac{t^2 - t}{1+t} \] This can be split into two separate integrals: \[ 2 \left( \int t \, dt - \int \frac{t}{1+t} \, dt \right) \] Solving the first integral simply yields: \[ 2 \cdot \frac{t^2}{2} = t^2 \] For the second integral, use the substitution \( u = 1 + t \), which leads to \( dt = du \): \[ \int \frac{t}{1+t} \, dt = \int \frac{u-1}{u} \, du = \int (1 - \frac{1}{u}) \, du = u - \ln |u| + C \] Substituting back \( t \) in place of \( u \): \[ = (1+t) - \ln |1+t| \] Thus, combining everything, we have: \[ 2 \left( t^2 - \left( (1+t) - \ln |1+t| \right) \right) + C \] Now substituting back \( t = \sqrt{x} \) gives the final answer in \( x \): \[ 2 \left( x - (1 + \sqrt{x}) + \ln |1 + \sqrt{x}| \right) + C \] So the integral evaluates to: \[ 2x - 2 - 2\sqrt{x} + 2\ln |1+\sqrt{x}| + C \]
