Pregunta
upstudy study bank question image url

Answer the following questions about the equation below. \( x^{3}-17 x-4=0 \) (a) List all rational roots that are possible according to the Rational Zero Theorem. Choose the correct answer below. A. \( \pm 1 \) B. \( \pm 4 \) C. \( -1,-2,-4 \) D. \( \pm 1, \pm 2, \pm 4 \)

Ask by Carrillo Thornton. in the United States
Dec 08,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The possible rational roots are \( \pm 1, \pm 2, \pm 4 \). Correct answer is D.

Solución

To apply the Rational Root Theorem, we need to identify the possible rational roots of the polynomial \( x^{3}-17x-4=0 \). The Rational Root Theorem states that any rational solution, in the form of \( \frac{p}{q} \), must have \( p \) as a factor of the constant term (which is \(-4\) in this case) and \( q \) as a factor of the leading coefficient (which is \(1\) in this case). 1. The factors of the constant term \(-4\) are: \(\pm 1, \pm 2, \pm 4\). 2. The factors of the leading coefficient \(1\) are: \(\pm 1\). Thus, the possible rational roots are the factors of \(-4\) divided by the factors of \(1\), which gives us: \[ \pm 1, \pm 2, \pm 4. \] Therefore, the correct answer is: **D. \( \pm 1, \pm 2, \pm 4 \)**.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

The Rational Root Theorem states that any potential rational root of a polynomial \( f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0 \), is in the form \( \frac{p}{q} \), where \( p \) is a factor of the constant term (in this case, -4) and \( q \) is a factor of the leading coefficient (which is 1 here). The factors of -4 are \( \pm 1, \pm 2, \pm 4 \) and since the leading coefficient is 1, the possible rational roots are just those factors. So, the correct answer is D: \( \pm 1, \pm 2, \pm 4 \). Now that we’ve covered that, remember to check each candidate root by substituting back into the original equation to see if they yield zero. It can be quite the adventure to find the right root, but it’s all part of the math journey!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad