Pregunta
upstudy study bank question image url

A function \( f \) and a point \( P \) are given. Let \( \theta \) correspond to the direction of the directional derivative. Complete parts a. through \( e \). \( f(x, y)=\sqrt{3+2 x^{2}+2 y^{2}}, P(\sqrt{3},-1) \) a. Find the gradient and evaluate it at \( P \). The gradient at \( P \) is \( \left.\left\lvert\, \frac{2 \sqrt{3}}{\sqrt{11}}\right.,-\frac{2}{\sqrt{11}}\right) \). (Type exact answers, using radicals as needed.) b. Find the angles \( \theta \) (with respect to the positive \( x \)-axis) associated with the directions of maximum increase, maximum decrease, and zero change. What angles are associated with the direction of maximum increase? \( \frac{11 \pi}{6} \) (Type any angles in radians between 0 and \( 2 \pi \). Type an exact answer, using \( \pi \) as needed. Use a comma to separate answers as needed.) What angles are associated with the direction of maximum decrease? \( \square \) (Type any angles in radians between 0 and \( 2 \pi \). Type an exact answer, using \( \pi \) as needed. Use a comma to separate answers as needed.)

Ask by West Erickson. in the United States
Mar 17,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Maximum increase direction: \( \theta = \frac{11\pi}{6} \) Maximum decrease direction: \( \theta = \frac{5\pi}{6} \) Zero change directions: \( \theta = \frac{\pi}{3} \) and \( \theta = \frac{4\pi}{3} \)

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Extra Insights

To find the angles associated with maximum increase, maximum decrease, and zero change, we start with the gradient we calculated. For maximum increase, the direction of the gradient is given by the angle \( \theta \) which corresponds to the gradient vector. In your case, the gradient at point \( P \) is already evaluated, and the angle \( \theta \) can be found using: \[ \theta = \tan^{-1}\left(\frac{y}{x}\right) \] Thus, plug in the components of the gradient, where the x-component is \( \frac{2 \sqrt{3}}{\sqrt{11}} \) and the y-component is \( -\frac{2}{\sqrt{11}} \). The angle associated with the maximum increase: \[ \theta = \tan^{-1}\left(-\frac{\frac{2}{\sqrt{11}}}{\frac{2\sqrt{3}}{\sqrt{11}}}\right) = \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) \] This corresponds to: \[ \theta = \frac{11\pi}{6} \text{ (which is in the fourth quadrant)} \] For maximum decrease, the angle is directly opposite to the gradient direction: \[ \theta + \pi = \frac{11\pi}{6} + \pi = \frac{11\pi}{6} + \frac{6\pi}{6} = \frac{17\pi}{6} \] To fit this within \( [0, 2\pi) \): \[ \frac{17\pi}{6} - 2\pi = \frac{17\pi}{6} - \frac{12\pi}{6} = \frac{5\pi}{6} \] Thus, the angles associated with maximum increase and maximum decrease are: - Maximum Increase: \( \frac{11\pi}{6} \) - Maximum Decrease: \( \frac{5\pi}{6} \) - Angles with zero change are any angles perpendicular to these direction angles, which can be calculated as \( \frac{k\pi}{2} \) for integer \( k \). Therefore, your answers are: Maximum increase: \( \frac{11\pi}{6} \) Maximum decrease: \( \frac{5\pi}{6} \)

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad